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Abstract
This dissertation introduces, validates, and applies various models for the
study of microswimmers, predominantly focusing on the development of
lattice algorithms. The models are applicable to biological swimmers like
bacteria, but also to artificial ones propelled via chemical reactions. The
unifying theme is a complex fluidic environment, ranging from Newtonian
single-component fluids, to electrolyte solutions, to viscoelastic media flowing
through arbitrary geometries. A particular focus is placed on resolving each
swimmer’s surface since the propulsion, or phoresis, originates from a small
layer of fluid around it. Resolving the propulsion mechanism is necessary
to accurately study hydrodynamic interactions with obstacles and other
swimmers. It is also a prerequisite for the study of taxis, that is, alignment
with an external field such as a nutrient gradient. Similarly, phoretic
interactions can be investigated, like when a swimmer senses and avoids the
trail where another swimmer has already depleted the fuel.

Resolving the propulsion poses a challenge because it significantly increases
the required computational effort. Methods like multi-particle collision dy-
namics (MPCD) or finite element method (FEM) have previously been used
for this purpose, but suffer from unphysical effects or are not efficient enough
to simulate transient behavior. This open problem is addressed by the new
computational methods developed in this thesis. We design them to be
sufficiently generic to also be applied to other types of fluids and even to
areas of soft matter physics beyond active matter. The methods are based
on lattice Boltzmann (LB), which is well-suited for time-dependent prob-
lems involving complex boundary conditions. Ionic solutes and viscoelastic
stresses are considered via the finite volume (FV) method, which is ideal for
the study of problems based on conservation laws. Novel moving boundary
schemes permit resolving the swimmers on the lattice without re-meshing
as they move. A sub-grid scheme is employed to smoothen out artifacts
when lattice cells are converted between fluid and solid. A simple analytic
far-field model is also used in this thesis to understand mobility reversal
of simple swimmers at obstacles — a behavior that had previously been
observed, but not explained solely in terms of hydrodynamics.

The development of these lattice methods allowed me and my collaborators
to address open questions in literature, leading to four main results, each
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Abstract

of which is each presented in a separate chapter. The first result is for a
squirmer, a simple yet instructive model for microswimmers, which employs
an effective slip velocity on the surface of a sphere to describe self-propulsion.
Solving for the flow around the squirmer using the LB method is relatively
straightforward, but requires an unexpectedly fine grid resolution to capture
the physical flow fields and behaviors with adequate precision. The accuracy
of the LB model is demonstrated using four basic hydrodynamic tests, two
for the far-field flow, and two that require the near field to be accurately
resolved, which LB is capable of doing down to the grid resolution. Excellent
agreement with results obtained using other hydrodynamic solvers in the
same geometries is found, and the minimum resolution required to achieve
this reproduction is identified.

The second topic was inspired by an unexpected mobility reversal observed
in some of the LB squirmer simulations. Self-propelled particles have been
experimentally shown to orbit spherical obstacles and move along planar
walls. A theoretical and numerical investigation of this behavior is performed
for a squirmer interacting with flat and curved surfaces. The hydrodynamics
are approximated by means of the method of reflections, which is accurate
in the far field; the LB solver is used to confirm that the far-field predictions
remain valid when also accounting for near-field flows. The far-field model
predicts three distinct behaviors: orbiting/sliding, scattering, and hovering,
with orbiting being favored for lower curvature as in the experimental
literature. Surprisingly, the far-field calculations also predict backward
orbiting/sliding for sufficiently strong pushers. This is caused by fluid
recirculation in the gap between the squirmer and the obstacle leading
to strong forces opposing forward motion. The effect can be attributed
to the quadrupolar mode of the squirmer. These results provide insight
into a possible mechanism of mobility reversal mediated solely through
hydrodynamic interactions with a surface.

The third main subject concerns viscoelastic fluids. This makes it applica-
ble to many biological fluids, which have elastic properties in addition to the
dissipative properties found in Newtonian fluids. Examples include the loss
of time-reversibility due to memory, as well as a coupling between translation
and rotation. Computational models can help us understand viscoelastic
flow, but are often limited in how they deal with complex flow geometries
and suspended particles. Some incorporate unphysical additional terms into
the constitutive equations; others require the stress to be known at bound-
aries, which is not a priori possible for arbitrarily-shaped fixed and moving
boundary conditions. The LB solver for Oldroyd-B fluids introduced in this
thesis avoids these shortcomings, making it ideally suited for the simulation
of confined colloidal suspensions. The method is validated using several
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standard rheological setups: transient Poiseuille flow, steady shear flow, the
lid-driven cavity, and the four-roll mill. Additionally, a single sedimenting
colloid is studied to verify the new moving boundary scheme, also finding
good agreement with literature. Translation-rotation coupling, an important
property of viscoelastic media, is demonstrated for two rigidly-connected
spheres. This snowman-like object is spun by an externally-applied torque,
leading to linear motion only in viscoelastic fluids. The squirmer is again
used, showing the applicability of the method to microswimmers, but also
encountering the limitations of Oldroyd-B. Oldroyd-B becomes unphysical
for elastic relaxation times beyond a certain limit. However, we have de-
signed our approach such that it is easy to extend the algorithm to other
constitutive equations, like Giesekus or FENE-P, which do not suffer from
this problem.

The fourth topic deals with colloids suspended in electrolyte solutions,
introducing a moving boundary scheme similar to the one for the viscoelastic
fluids. The motion of ionic solutes and charged particles under the influence
of an electric field and the ensuing hydrodynamic flow of the underlying
solvent are ubiquitous in soft matter physics. The solute and flow are
described by a coupled set of differential equations, collectively referred to
as the electrokinetic equations; the boundary conditions define the specific
problem being considered. A lattice-based method for solving this system
of equations has previously been introduced based on a coupled LB-lattice
electrokinetics (EK) scheme, but did not allow for particle coupling. The
key ingredients of the new moving boundary method are mass and charge
conservation for the solute species and a partial-volume smoothing of the
solute fluxes to minimize discretization artifacts. The algorithm’s effective-
ness is demonstrated by simulating the electrophoresis of charged spheres
in an external field. For a single sphere this is compared to the equivalent
electro-osmotic (co-moving) problem, where the former’s instantaneous ve-
locity is found to lie within 2% of the latter’s steady-state value and the
temporal artifacts of the discretization are of the same magnitude.

The field of active matter research has changed significantly since I started
working on this thesis in the year 2016. Development and understanding of
the propulsion and behavior of artificial microswimmers had been one of the
major research questions occupying the active matter community for the
preceding decade. My work on electrokinetics was aimed at contributing
to this line of research, while also being relevant to the fields of catalysis
and bioreactive flows. A comprehensive answer to the open questions on
self-diffusiophoretic and self-electrophoretic propulsion has yet to be reached,
with the main obstacle appearing to be insufficient understanding of the
chemical reactions involved. Even before research of artificial microswimmers
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started, it was realized that much of the larger-scale behavior of swimmers
is universal across different kinds of propulsion. Significant insight into
microswimming could thus be obtained irrespective of these details, for
example by looking at their swarming behavior or their interaction with
surfaces. As a result, my own interest has shifted toward simpler models,
aligning with a longer-standing trend in the community. Nevertheless,
electrokinetics remains relevant in active matter because chemical propulsion
leads to emergent phenomena that are not universal or not captured by the
simpler models. More recently, the focus of the community has shifted to
biological, bio-compatible, and bio-inspired swimmers, to which my work on
squirmers connects. Research into such swimmers has more medical relevance
and delivers direct insight into biology. As a consequence, viscoelastic fluids
have seen a surge of interest due to their prevalence in nature. Their more
complex rheology facilitated new kinds of swimmer behavior, for example
because it allows swimmers to evade the scallop theorem. The combination
of the computational methods for viscoelasticity, electrolytes, and chemical
reactions I give in this thesis will provide a valuable tool for the study
of biological and man-made microswimmers across a wide range of fluid
environments.
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1 Introduction
Microswimmers have fascinated people ever since bacteria were first seen
under a microscope [10, 11]. Only after the development of microhydrody-
namics nearly three centuries later, physicists have been able to describe
and come to appreciate the unique challenges that a microorganism’s en-
vironment poses on its motion [12, 13]. The term ‘microhydrodynamics’
was coined by Batchelor, who gave a review of its early days in reference 14.
It was noticed that swimming at such scales works completely differently
from what a human swimmer might be accustomed to [15–19]: more akin
to attempting to swim through honey or a tangle of rope than through a
pool of water. Theoretical models [20, 21] were developed to abstract the
complexities of biology into simple mathematics.

The field gained traction once it was realized that artificial microswimmers
could have a plethora of applications in engineering and medicine [22–
24]. After the groundbreaking experiments of Paxton et al. [25], whose
bimetallic nanorods propel by catalytically decomposing hydrogen peroxide,
soon followed by Howse et al. [26] with catalyst-covered non-conductive
microspheres, dozens of other groups devised their own microswimmers that
swam in all kinds of environments [27–29]. Collective effects previously
only known from macroscopic scales, like turbulence [30, 31] or flocking
[32], were also observed. New propulsion schemes were developed faster
than theoretical understanding could be gained on how efficient they are
or why they work at all [33–36]. Some people even argued that a natural
microswimmer like Escherichia coli, combined with the tools of modern
genetics, would provide a simpler, more well-controlled model and yield
more insight into microswimming than any of its artificial counterparts [37].

It is difficult and time-consuming to explore a high-dimensional parameter
space in experiments, and not all relevant quantities may be directly measur-
able. A bottom-up model can be constructed to help here once the relevant
physical phenomena — like diffusion, hydrodynamics, or heat conductivity —
have been identified. The defining property of a bottom-up model is that it
contains only physical parameters — such as diffusion coefficients, viscosity,
or heat capacity — and no modeling parameters like surface potentials or
effective charges. Such a model can give a more detailed picture of what
is happening in the experiment and permits selectively switching on and
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1 Introduction

off aspects like electrostatics or hydrodynamics to determine their relative
importance. It might also be employed to optimize a propulsion method for
efficiency or speed in a specific environment. Analytic theory can often only
solve these models for simple systems or in rough approximation, but gives
mathematical expressions that fully answer a question for a wide range of
parameters. The power of computer simulations, on the other hand, lies
in their ability to deal with complex many-body problems and arbitrary
boundary conditions. As a result, theoretical and computational approaches
often go hand-in-hand to further the understanding of microswimmers and,
in fact, many other fields of physics.

The present chapter will give an overview of active matter and different
modeling approaches for it. This shall set the stage for the rest of this thesis.

1.1 Active matter
There are two defining qualities to active matter. Firstly, it must convert
energy, either stored internally or harvested from the environment, into useful
work. This work is often in the form of motion, but biological active matter
also expends a significant amount of energy on upkeep and reproduction
of its organism. Secondly, it must possess some kind of asymmetry, e.g.
in shape or surface features, that determines the direction of the motion.
Spontaneous symmetry breaking is also sufficient [38, 39]. External fields
are not allowed to be used to break symmetry under this definition, but
their non-directional presence may be used as a convenient energy source
[40]. The energy turnover on the single-particle level makes active systems
inherently non-equilibrium, which prohibits the use of common terms and
methods from thermodynamics. Some equilibrium concepts have successfully
been extended for non-equilibrium purposes in active matter [41, 42], and
active matter has become an important application and driver [43, 44] of
the emerging field of non-equilibrium thermodynamics.

1.1.1 Wet and dry active matter
Active matter can generally be divided into two classes: ‘dry’ and ‘wet’ [45].
The former includes systems where particle momentum is fully dissipated
into a rigid substrate, such as a surface or porous medium [46]. The latter
encompasses systems where interactions mediated by a fluid play a role [47,
48]. Dense suspensions of active particles are an intermediate case, but can
often be considered ‘dry’: while they involve a fluid, thermal fluctuations
and steric interactions with neighboring particles typically prevail over any

14



1.1 Active matter

hydrodynamic interactions [49]. This is not always the case, however, and
hydrodynamics might suppress effects predicted by ‘dry’ models [50].

‘Dry’ active matter can exhibit fascinating phenomena such as flocking
[51]. Vicsek et al. [52] considered self-propelled particles with constant
speed and an alignment interaction and were the first to recognize that
there is a phase transition between a disordered and an ordered state.
Competition of directional motion and stochastic reorientation, together
with short-range pairwise repulsion, gives rise to motility-induced phase
separation (MIPS), where particles cluster into an ordered state when
directionality dominates and disperse into a disordered state when noise
dominates [53–55]. Descriptions in terms of thermodynamics have recently
been developed [56, 57]. Some other classic soft matter systems also have
active analogues. Active gels consist of cross-linked filaments where the
activity stems from attached proteins [58, 59]. Active nematics resemble
liquid crystals, but the activity of the constituent particles leads to turbulence
and dynamic topological defects [60, 61].

‘Wet’ active matter systems are significantly more complex because they
involve more than just the swimmers and their containers. Now the mass,
heat, and momentum transport of a fluid may affect the dynamics of the
swimmers. Molecules of substances much smaller than the swimmers may
be dissolved in the fluid. Long-ranged interactions between swimmers,
e.g. through electrostatics [62, 63] or hydrodynamics [64–66], may become
relevant as they are no longer screened by the dense packing. In the case
of electrostatics, dissolved salt can serve as an alternative screening agent,
however some electrostatic potentials due to chemical reactions may not be
screenable [35]. Some important functionality of biological microswimmers
is due to hydrodynamics [47, 67]: certain sperm swim faster together [68] or
accumulate at surfaces [69], and bacteria can attach to surfaces [70]. Use of
microswimmers as microfluidic mixing devices has also been demonstrated
[71, 72]. Hydrodynamics can have profound effects even on systems typically
considered ‘dry’ [73, 74], but cases where effects attributed to hydrodynamics
[75] turned out to only be modeling artifacts [65] have also been reported.

1.1.2 Swimming at low Reynolds numbers
Compared to what we know about swimming in a macroscopic world, the
hydrodynamics of small length scales poses a major challenge for swimming.
The Reynolds number, which will be formally introduced in section 2.5, is
significantly less than unity here. This means that the fluid’s dissipative
friction dominates and inertial effects are negligible. As a result of this, the
Navier-Stokes equations, which govern flow, reduce to the time-independent
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Stokes equations as will be shown in section 2.1.3. The lack of time-
dependence means that only an asymmetric swimming stroke can lead
to net motion. In a symmetric (or reciprocal) stroke, even if forward and
backward stroke were carried out at different speeds, both strokes would
cover the exact same distance. This was originally described by Taylor
[15–17] and later popularized by Purcell [19], who stated that swimming
like a scallop — by opening slowly and closing quickly to squirt out water
— is ill-suited for moving through the microscopic world.

For this reason, evolution has come up with a variety of specialized
propulsion methods for biological microorganisms. Similarly, scientists have
to resort to certain tricks to make man-made microswimmers actually swim.
These will be covered in the sections below. Additionally, it is worth noting
that Purcell’s theorem is only valid under precisely the conditions given: as
soon as any symmetry is broken, swimming is possible even by reciprocal
motion [76]. Flows in viscoelastic fluids, which have memory, are not time-
reversible [77, 78]. Small amounts of inertia of the fluid [79] or the swimmer
[80, 81] can also break time-reversibility. Spatial symmetry can be broken
by the hydrodynamic interaction with other swimmers [82] or with surfaces
[83].

1.1.3 Biological microswimmers

The most prominent microswimmers are bacteria. They typically propel
mechanically by beating or turning one or more flagella, which are hair-like
appendages of lengths similar to the bacterium itself. Each flagellum is
attached to a motor protein, which converts chemical energy into rotational
motion [84, 85]. Such bacteria are classified by the number and positioning
of their flagella [86]: one or more may be anchored in one spot or at opposite
ends of the bacterium, or the entire surface of the bacterium might be
covered with flagella.

Flagella alone may be sufficient for directed motion, but not for the choice
of direction to follow a specific purpose. The bacterium needs to be able to
influence its direction of swimming, e.g. in response to a gradient in nutrient
concentration, viscosity, or temperature that it senses. This is called “taxis”,
or for the specific examples, “chemotaxis”, “viscotaxis”, and “thermotaxis”.
One approach to this is employed by Escherichia coli and is called “run
and tumble” [85]: Depending on the direction in which the motor protein
turns, the helical flagella either bundle together or unbundle. When the
flagella are bundled together, their rotation propels the bacterium forward
in a corkscrew fashion. When the bacterium needs to reorient, it changes
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the motor direction to unbundle the flagella until rotational diffusion has
reoriented it to its new preferred direction.

Other biological microswimmers include sperm, algae such as Chlamy-
domonas reinhardtii or Volvox, and microorganisms like Paramecium. They
employ similar kinds of mechanical propulsion, even if the precise details of
the motor and beating pattern differ and the appendages might be called
“cilia” or “filaments” [29]. In the case of the algae, an additional kind of
taxis becomes relevant, namely phototaxis, as swimming toward light is
favorable for photosynthesis [87]. Even some enzymes may be considered
swimmers as they perform phoresis [88, 89].

Most biologically relevant fluids are more complex than water. Examples
include ovary fluids, through which sperm swim [90, 91]; stomach mucus,
through which Helicobacter pylori burrows [92]; the biofilms formed by
some bacteria [93]; and blood, in which Trypanosoma live [94]. All of these
fluids possess internal structure, which means that they might necessitate
specialized swimming modes or can even enable swimming by strokes that do
not yield net propulsion in Newtonian media. The non-Newtonian rheology
of blood is shear-thinning, while the other fluids are viscoelastic.

1.1.4 Artificial microswimmers
Millions of years of evolution have endowed even single-celled microorganisms
with enough complexity that arguably they cannot serve as minimal model
microswimmers. While much of this complexity is unrelated to the process
of swimming itself, the non-swimming and swimming functions are entwined,
for example via shape changes or the metabolism. Furthermore, some
examples listed in the previous section are highly pathogenic and thus not
suitable for use in many laboratories. As a result, various kinds of artificial
microswimmers have been developed. Mechanical propulsion like for the
natural microswimmers still poses a significant engineering challenge, so with
the exception of some swimmers with propulsion resembling that of sperm
[95, 96], most work has focused on chemically-propelled microswimmers,
some of which we will detail in the following. A further advantage of this is
that taxis can be built directly into the propulsion scheme [97, 98], whereas
microorganisms typically have distinct sensing and propulsion organs [99].

Bimetallic nanorods and microspheres were among the first artificial
chemical microswimmers as mentioned at the beginning of this chapter
[25, 100]. They consist of a catalytic and an inert metal, for example
platinum and gold. The catalyst enables the decomposition of a fuel,
typically hydrogen peroxide into water and oxygen. This is a redox reaction,
where the conduction of electrons across the bimetal plays a role [101]. The
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propulsion is commonly understood to be self-electrophoretic in nature [102]:
the swimmer is charged and the reaction creates an inhomogeneous charge
distribution around the swimmer, so it moves in this self-generated field
[103]. A crucial aspect here is the large difference in diffusivity of the various
solute ions [104]. The full chemistry of the catalytic process is unfortunately
not yet known; it has been speculated that intermediate reaction products
play a significant role [35], but simpler models without these have also been
highly successful at explaining experimental observations [101].

Janus swimmers are colloids partially coated with a catalyst, often plat-
inum on silica [26, 105]. They operate on the same hydrogen peroxide-
decomposition reaction as above, but the isolating properties of the colloid
seemed to rule out that this is the same propulsion method. Propulsion
here was first attributed to self-diffusiophoresis [106–108], where the inho-
mogeneous distribution of neutral reaction products and their short-ranged
interaction with the swimmer’s surface lead to motion. It was later argued
that there is a self-electrophoretic component to the propulsion as well due
to intermediate reaction products [34–36, 109] and that inhomogeneous
reaction rates due to inhomogeneous catalyst coating thickness play a role
[36].

Many other swimmer propulsion methods have been realized in exper-
iments. For extensive reviews, see references 27–29. These include self-
thermophoresis [40, 110, 111], bubble propulsion [112], propulsion by differ-
ences in surface tension via the Marangoni effect [113, 114], and propulsion
by Quincke rotation [115, 116].

1.1.5 Pairwise and collective interactions
So far, we have only discussed active matter on the single-swimmer level.
This might suffice for many applications, e.g. drug delivery [117] or micromix-
ing [118], but some of microswimmers’ most interesting properties stem
from their interactions with each other [64–66]. Long-ranged interactions in
soft matter are generally hydrodynamic or electrostatic, which are relevant
here for ‘wet’ and for charged active matter, respectively. Short-ranged
interactions also play a role, e.g. the repulsion on close contact that prevents
overlap of two swimmers, and are the primary interactions found in ‘dry’
active matter. A different kind of interaction is unique to active matter: the
phoretic interaction. In this case, one swimmer’s phoresis affects another
swimmer’s taxis or ability to phorese. For example, a chemophoretic bac-
terium’s consumption of nutrient might cause another bacterium to perform
taxis away from it or slow down that bacterium’s chemophoresis. This kind
of effect has been directly observed in an experiment where oil droplets
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self-propel through a surfactant solution and leave behind a trail of filled
micelles, which other droplets then avoid until the trail has dispersed [114].

The combination of all these interactions may lead to collective effects
that span large groups of swimmers or even an entire population [29]. This
can either be in the form of self-organization [119–127] or as cooperative
behavior [68, 128, 129], where swimmers together achieve something that a
single one could not achieve. Such behavior can resemble turbulence [30,
31] — a phenomenon well-known in high-Reynolds fluid dynamics but with
a completely different underlying cause — and flocking [32] similar to how
large groups of birds or fish behave. This kind of collective behavior is
currently one of the most actively researched areas of active matter.

1.2 Modeling of active matter
The level of detail on which microswimmers need to be modeled depends on
the phenomena one intends to study. It is generally not possible to consider
every atom in the system: for analytic theory, the atoms’ discrete nature is
highly inconvenient, while for computation, the sheer number of atoms is
intractable. Fortunately this amount of detail is usually not necessary. The
first question to answer before picking a modeling approach is whether the
fluid plays a role. This mirrors the ‘wet’ vs. ‘dry’ discussion of section 1.1.1.
This is followed by questions about what resolution is required (the collective
of swimmers, the swimmer, the swimmer’s surface, the fluid’s structure) and
whether the details of the propulsion method matter, as illustrated by the
decision tree in figure 1.1.

Microswimmers, being on the order of 10−8 m to 10−4 m [27], are not
subject to quantum effects, only their surface chemistry might be. Even the
influence of thermal fluctuations at this length scale is often negligible. Water
and many other fluids consist of molecules much smaller than that, so they
may be described by continuum equations, e.g. for mass and momentum,
to which the microswimmers only act as boundary conditions. Solutes
suspended in the fluid, like ions or polymers, are usually also much smaller
than the swimmers, so these too may be described by continuum equations,
e.g. for concentration or orientation. Note that there are exceptions: for
example, some viscoelastic liquids contain polymers with effective sizes on
the order of or larger than typical microswimmers [130], in which case the
polymers need to be modeled at the same level as the microswimmer. There
are even situations in which the swimmers themselves can be considered
implicitly via continuum equations.

Each of these modeling approaches will be briefly discussed in the rest of
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Figure 1.1: Decision tree for the choice of a modeling approach for micro-
swimmers. The scale bar at the bottom indicates the finest length scale
resolved — like the size of a lattice cell, the physical radius of a particle
modeled as point-like, or the smallest physical features incorporated into
an analytic model. 𝑅 is the radius of an individual swimmer, 𝜆D is a char-
acteristic interaction length scale (like the Debye length in an electrolyte
solution, see section 2.2.2), and 𝑟g is the structure size of the fluid (like the
radius of gyration of the polymers in a polymer solution).
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this section, but the thesis as a whole will focus on the surface-resolved ones.
We start with the most detailed and then move to the coarser, more abstract
models. For each model, it will be mentioned what kind of phenomena can
be studied with it and what its limitations are.

1.2.1 Explicit-particle methods
The simplest models describe the microswimmers and their surrounding
fluid as particles. This is generally done in a molecular dynamics (MD)
or Monte Carlo (MC) simulation, where trajectories or thermodynamic
states are calculated from particle-particle interactions. The main modeling
assumptions lie in these interactions. In an atomistic simulation, these
could come from first principles, but due to the large number of atoms
involved, coarse-grained simulations are typically used. There, each particle
represents entire molecules, monomers, clusters of fluid molecules, or even
entire swimmers, so effective interactions need to be used.

Experimentally measurable parameters such as diffusion coefficients, reac-
tion rates, and colloid sizes can be used to inform simulation parameters,
but there is generally no trivial parameter mapping. For this reason, explicit-
particle methods are not often used directly for active matter [131].

1.2.2 Continuum fluid methods with resolved propulsion
The highest-level models that are compatible with phoretic interactions of
the swimmers are those that explicitly consider the swimmers’ propulsion.
Generally, this means resolving the swimmer’s surface, e.g. the bacterium’s
flagella or the Janus colloid’s surface coating profile. The fluid is treated
as a continuum, usually by the Navier-Stokes equations (see section 2.1.3)
or a viscoelastic model (see section 2.1.5). Other relevant fields, such as
temperature, concentration of various solutes, etc. may be included and
similarly evolved by continuum equations. The main requirement here
is that fluid molecules and any solutes are significantly smaller than the
swimmer. Most model parameters — like diffusion coefficients, reaction rates,
or viscosity — can be measured in experiments, so this can be considered
a bottom-up model. The main modeling choice is which equations and
fields to include. The microswimmers serve as boundary conditions to these
equations.

The limitations of this approach are mostly due to computational effort.
In addition to resolving the swimmer’s surface, all field gradients need
to be resolved. For self-electrophoresis, this poses a problem when the
electric double layer (see section 2.2.2) is thin compared to the swimmer’s
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size, as in high-salt environment or for nanoswimmers. In the case of self-
diffusiophoresis, the relevant interactions take place on atomistic length
scales [106, 107], which cannot reasonably be resolved in a continuum model.
Thus it is common practice to introduce effective surface charges and surface
slip velocities on the swimmer [132–134], which defeats the bottom-up
nature of this modeling approach and makes it difficult to include phoretic
interactions in the model.

These continuum models have successfully been applied to single artificial
swimmers [101, 102, 135, 136] and for the interactions of several swimmers
[137, 138], but simulations involving the collective effects of thousands of
swimmers are just barely possible given today’s computing capabilities
[134]. The finite element method (FEM) [136, 139, 140], finite volume (FV)
method [141], boundary element method (BEM) [135], and boundary integral
method (BIM) [138] are commonly used for modeling on this scale, but are
primarily suited to steady states and not to the calculation of trajectories,
due to the cost of re-meshing. Lattice Boltzmann (LB) and multi-particle
collision dynamics (MPCD) are thus a more natural choice for the simulation
of transient behavior, and the work of chapter 8 takes a step in that direction.
That chapter’s introduction also draws a comparison between available
simulation methods and mentions some of their applications beyond the field
of active matter. MPCD is comparable to LB in terms of computational
effort, but for the systems considered here, its unphysical compressibility
and inherent thermal fluctuations are a disadvantage. Another method
worth mentioning is dissipative particle dynamics (DPD), whose use has
mostly been superseded by MPCD because its model parameters do not
easily translate into rheological quantities like viscosity. LB and MPCD
have successfully been applied to mechanical propulsion by flagella [142–
145], but these simulations are simpler because they do not involve any
non-hydrodynamic effects. DPD has been applied to chemical swimmers
[146] and self-thermophoretic swimmers [147], but proved computationally
too inefficient as it required a resolution that would more readily put it into
section 1.2.1.

1.2.3 Continuum fluid methods with effective propulsion
Compared to section 1.2.2, effective-propulsion models eliminate the details
of the propulsion method and resort to purely hydrodynamic descriptions
[148–153], usually by the squirmer model [20, 21], which will be formally
introduced in section 2.4. The squirmer parameters may be chosen based on
the specific propulsion method of the swimmer [154–156]. This eliminates a
significant part of the computational effort, but also eliminates any phoretic
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interactions from the model. The reduction in complexity enables scaling
up to systems where collective effects across many swimmers play a role
[65, 75, 129, 157–160]. The simulations in chapters 5 and 7 fall into this
category, and these chapters will draw a more detailed comparison between
available computational methods.

Further simplification is possible by only considering the far field [161–
164]. In this case, the equations may simplify to the point where they are
analytically tractable [165–167], but this comes at the price of a loss of
accuracy in the hydrodynamic interactions over small distances. Despite this
simplification, the predictive power of such far-field models is astonishing,
as seen, for example, with the calculations performed in chapter 6. That
chapter’s introduction will also give a broader perspective on hydrodynamic
far-field models.

1.2.4 Explicit fluid methods
The continuum fluid methods of sections 1.2.2 and 1.2.3 cannot deal with
fluids composed of molecules that are not small compared to the swimmer.
The most prominent example of this is swimming in polymeric solutions [168,
169]. In this case, the solvent can be modeled as before, but the polymers
are considered in an MD fashion and coupled to the fluid.

1.2.5 Continuum fluid methods with point-coupled
swimmers

The continuum fluid methods of sections 1.2.2 and 1.2.3 resolve the swimmer
to study interactions between multiple swimmers at high precision. If that
is not required, swimmers can be considered as point forces acting on the
fluid [73, 170, 171]. This decreases the required resolution by an order
of magnitude and thus enables the study of systems involving millions of
swimmers on a single computer [73, 171].

1.2.6 Active Brownian particles
The active Brownian particle (ABP) model is a coarse-grained MD model
with a prescribed velocity for each particle, hard-core repulsion between
particles, and thermal fluctuations that randomly reorient particles [172–
174]. In stark contrast to the models discussed so far, it does not involve a
fluid and is thus not momentum-conserving, which makes it suited for ‘dry’
active matter. With the swimmers only represented by an effective velocity
and rotational diffusivity, phoretic interactions are obviously not represented
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either. Due to its simplicity and high computational efficiency, the ABP
model can easily be applied to systems involving millions of swimmers [175].
The run-and-tumble particle (RTP) model is conceptually similar to the
ABP model, tumbling at discrete times instead of exhibiting continuous
rotational diffusion [176].

1.2.7 Continuum active matter
The coarsest active matter models are those where the individual swimmers
are not resolved, but rather considered as a continuous medium with local
properties like density and orientation. The time evolution is described by
a Fokker-Planck equation that incorporates any interactions of a swimmer
with other swimmers and with its environment into effective interactions,
making it a mean-field approximation. The Fokker-Planck equation is a
stochastic differential equation, which makes the approach well-suited for
Brownian diffusion processes.

This kind of continuum method has been applied to microswimmers
both with hydrodynamics [177–181] and without [182–185]. Comparable
methods have been applied to active nematics [186–189], where the nematics
and their activity are included into the hydrodynamic equations, and to
ABPs [190], where continuum equations for their density distribution are
obtained. Continuum methods are well suited to study collective effects,
as long as these are agnostic to the details of the swimmers’ interactions.
Hydrodynamic interactions are dealt with in a significantly simplified way,
and phoretic interactions are usually not considered. For this reason, they
are mostly suited to ‘dry’ active matter.

1.3 Scope of this thesis
Recapitulating this brief overview, we have seen that many different methods
for modeling exist, covering various scales and levels of detail. The rest
of this thesis focuses on those methods with resolved propulsion and high
computational efficiency. Such methods are adapted for new purposes and
applied to sample problems. In the near future, this will allow for simulations
that incorporate enough detail to calculate phoretic interactions between
individual swimmers, yet are scalable enough to handle numbers of swimmers
that were previously only accessible to ‘dry’ simulations.

Chapter 2 will introduce in detail the theoretical background for the later
chapters. Chapters 3 and 4 will follow with the computational and analytic
methods used. In chapter 5, a hydrodynamic model microswimmer will be
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studied using a surface-resolved fluid dynamics method. This is followed up
by chapter 6, which uses a much simpler analytic far-field model to efficiently
shed light on a specific class of trajectories discovered in chapter 5. Chapter 7
introduces and validates a computational model for studying surface-resolved
microswimmers in viscoelastic fluids. Chapter 8 takes a comparable approach
for colloids in electrolyte solutions as a basis for a propulsion-resolved model,
and finds a solution to the additional complications stemming from highly
inhomogeneous ion distributions. Finally, chapter 9 will summarize this
work and give an outlook on worthwhile future directions of research.
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2 Theoretical background
This chapter introduces the equations underlying the relevant flow and
transport phenomena. We start out with the Navier-Stokes and Stokes
equations for hydrodynamics in sections 2.1.1 to 2.1.4 and extend them
to a viscoelastic Oldroyd-B fluid in section 2.1.5. Next, the electrokinetic
equations that describe the diffusion, advection and migration of ions in
solution are introduced in section 2.2. All of these equations describe bulk
behavior, to which section 2.3 provides the relevant boundary conditions.
While electrokinetics can be used to propel a microswimmer, we also intro-
duce a simple and purely hydrodynamic far-field model microswimmer in
section 2.4. The final section, section 2.5, list all dimensionless numbers rel-
evant to the physical problems discussed in this thesis. In terms of notation,
bold symbols denote vectors (𝒁)𝑖 = 𝑍𝑖 and bold sans-serif symbols denote
tensors (𝙕)𝑖𝑗 = 𝑍𝑖𝑗.

2.1 Fluid dynamics
The dynamics of a fluid can be derived by assuming that mass and momentum
are conserved. For the fluids considered in this thesis, incompressibility and
the irrelevance of inertia may be assumed to further simplify the resulting
equations.

2.1.1 Navier-Stokes equations
Let us consider the fluid in a small volume 𝑉0 and with density 𝜌. Any
change of the mass inside this small volume is due to flow with velocity 𝒖
through ∂𝑉0, the control volume’s surface. This may be expressed as

∂
∂𝑡

∫
𝑉0

𝜌(𝒓, 𝑡)d𝑑𝑟 = − ∫
∂𝑉0

𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡) ⋅ �̂�d𝑑−1𝑟, (2.1)

with 𝑑 the number of spatial dimensions and �̂� the surface normal vector.
The surface integral may be transformed into a volume integral using Gauß’s
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divergence theorem to obtain

∂
∂𝑡

∫
𝑉0

𝜌(𝒓, 𝑡)d𝑑𝑟 = − ∫
𝑉0

𝛁 ⋅ (𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡)) d𝑑𝑟. (2.2)

This expression holds for arbitrary 𝑉0, so the mass conservation law may
also be written in differential form,

∂
∂𝑡

𝜌(𝒓, 𝑡) + 𝛁 ⋅ (𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡)) = 0. (2.3)

This expression is often referred to as continuity equation for the fluid.
A similar approach may be taken to momentum conservation. Momentum

inside the small volume may change due to momentum flowing through the
surface, due to forces acting on the volume, and due to forces acting across
the surface:

∂
∂𝑡

∫
𝑉0

𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡)d𝑑𝑟 = − ∫
∂𝑉0

𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡) (𝒖(𝒓, 𝑡) ⋅ �̂�) d𝑑−1𝑟

+ ∫
𝑉0

𝑭(𝒓, 𝑡)d𝑑𝑟 + ∫
∂𝑉0

𝞼(𝒓, 𝑡)�̂�d𝑑−1𝑟. (2.4)

Note that the surface force is written in terms of a stress 𝞼. Again, the
divergence theorem may be applied,

∂
∂𝑡

∫
𝑉0

𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡)d𝑑𝑟 = − ∫
𝑉0

𝛁 ⋅ (𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡) ⊗ 𝒖(𝒓, 𝑡)) d𝑑𝑟

+ ∫
𝑉0

𝑭(𝒓, 𝑡)d𝑑𝑟 + ∫
𝑉0

𝛁 ⋅ 𝞼(𝒓, 𝑡)d𝑑𝑟, (2.5)

and the differential momentum conservation law may thus be expressed as

∂
∂𝑡

𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡) + 𝛁 ⋅ (𝜌(𝒓, 𝑡)𝒖(𝒓, 𝑡) ⊗ 𝒖(𝒓, 𝑡)) = 𝑭(𝒓, 𝑡) + 𝛁 ⋅ 𝞼(𝒓, 𝑡). (2.6)

Here, ⊗ is the tensor product and 𝛁⋅ now operates in a tensorial fashion.
To avoid ambiguity in the meaning of these symbols, component notation
will be used in the following.

A Newtonian fluid’s stress 𝞼 consists of a viscous stress 𝞮 and a pressure
𝑝:

𝜎𝑖𝑗(𝒓, 𝑡) = 𝜀𝑖𝑗(𝒓, 𝑡) − 𝑝(𝒓, 𝑡)𝛿𝑖𝑗, (2.7)
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𝜀𝑖𝑗(𝒓, 𝑡) = 𝜂n ( ∂
∂𝑟𝑖

𝑢𝑗(𝒓, 𝑡) + ∂
∂𝑟𝑗

𝑢𝑖(𝒓, 𝑡)) , (2.8)

where 𝜂n is the viscosity of the fluid.
Navier-Stokes has a third conservation law, one for energy. It describes

the evolution of the local fluid temperature. For purposes of this thesis, we
will assume isothermal fluids and negligible local heat production by the
swimmers and by chemical reactions. Thus our flows are fully described by
the first two Navier-Stokes equations.

2.1.2 Incompressibile Navier-Stokes equations
The compressibility of most liquids is negligible, in contrast to gases, where
compressibility may become relevant. This difference is characterized by the
Mach number

Ma = 𝑢
𝑐s

,

where 𝑐s is the speed of sound. Incompressibility may be assumed when
Ma ≪ 1. As a result, for the purposes of this thesis we may use

𝜌(𝒓, 𝑡) ≡ 𝜌 (2.9)

and thus simplify equations 2.3 and 2.6 together with equation 2.7 to obtain

𝛁 ⋅ 𝒖(𝒓, 𝑡) = 0, (2.10)
∂
∂𝑡

𝒖(𝒓, 𝑡) + 𝒖(𝒓, 𝑡)𝛁 ⋅ 𝒖(𝒓, 𝑡) = −∇𝑝(𝒓, 𝑡) + 𝜂n∇2𝒖(𝒓, 𝑡) + 𝑭 ext(𝒓, 𝑡),
(2.11)

where we have replaced 𝑭 with 𝑭 ext to clarify that this is the applied force
and does not contain the viscous forces internal to the fluid. These equations
are the incompressible Navier-Stokes equations.

2.1.3 Stokes equations
We may further simplify the incompressible Navier-Stokes equations 2.10
and 2.11 by considering the characteristic time scale 𝑇, velocity scale 𝑈, and
length scale 𝐿 of the flow. These can be used to introduce rescaled quantities
𝒓∗ = 𝒓/𝐿, 𝒖∗ = 𝒖/𝑈, 𝑡∗ = 𝑡/𝑇, 𝑝∗ = 𝐿𝑝/ (𝜂n𝑈), and 𝑭 ∗ = 𝐿2𝑭 ext/ (𝜂n𝑈).
Note that we do not set 𝑇 to 𝐿/𝑈 as it is not necessarily the time it takes
to move by the characteristic length. Instead, 𝑇 is the characteristic time
on which the flow is driven, for example by an oscillation with a frequency
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of 𝑇 −1 [191]. Expressing equations 2.10 and 2.11 in terms of these new
variables yields

𝛁∗ ⋅ 𝒖∗(𝒓∗, 𝑡∗) = 0, (2.12)

Re (St ∂
∂𝑡∗

𝒖∗(𝒓∗, 𝑡∗) + 𝒖∗(𝒓∗, 𝑡∗)𝛁∗ ⋅ 𝒖∗(𝒓∗, 𝑡∗))

= −∇∗𝑝∗(𝒓∗, 𝑡∗) + ∇2
∗ 𝒖∗(𝒓∗, 𝑡∗) + 𝑭 ∗(𝒓∗, 𝑡∗), (2.13)

where ∇∗ differentiates with respect to 𝒓∗ and the Reynolds number

Re = 𝜌𝑈𝐿
𝜂n

and Strouhal number
St = 𝐿

𝑈𝑇
have been introduced. These will be discussed further in section 2.5. For
now, it suffices to say that for microscale flows like in this thesis, Re ≪ 1
may be assumed, but ReSt may still be on the order of unity. This yields
the time-dependent or unsteady incompressible Stokes equation,

∂
∂𝑡

𝒖(𝒓, 𝑡) = −∇𝑝(𝒓, 𝑡) + 𝜂n∇2𝒖(𝒓, 𝑡) + 𝑭 ext(𝒓, 𝑡). (2.14)

Under the further assumption of St ≪ Re−1, we obtain the time-independent
incompressible Stokes equation [192]

−∇𝑝(𝒓, 𝑡) + 𝜂n∇2𝒖(𝒓, 𝑡) + 𝑭 ext(𝒓, 𝑡) = 0. (2.15)

This form of the Stokes equation will be used throughout the thesis, and
the assumption it is based on will be justified in section 2.5.

2.1.4 Generalized Stokes equations
The more general case of non-Newtonian fluids adds an extra stress 𝞽 to
equation 2.7. 𝞽 evolves according to a constitutive equation. Its effect on
the flow may be absorbed into equation 2.15’s force via

𝑭 p(𝒓, 𝑡) =
𝑑

∑
𝑗=1

̂𝒆𝑗

𝑑
∑
𝑖=1

∂
∂𝑟𝑖

𝜏𝑖𝑗(𝒓, 𝑡), (2.16)

where ̂𝒆𝑖 is the 𝑖-th unit vector. The total force density 𝑭 ext = 𝑭 + 𝑭 p is a
sum of an applied force density and the force resulting from the added stress,
which might stem from viscoelasticity, as discussed in the next section.
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2.1 Fluid dynamics

2.1.5 Viscoelastic fluids: Oldroyd-B

Theoretical descriptions of viscoelastic flows are commonly split into a
Newtonian part and an additional constitutive equation (see section 2.1.4),
which describes the stress evolution. There are many different constitutive
equations that describe the wide range of complex fluids encountered in
applications. These include Oldroyd-B [193], Jeffreys [194, 195], Giesekus
[196], FENE-P [197], FENE-CR [198], or Phan-Thien-Tanner (PTT) [199].
Finitely extensible nonlinear elastic (FENE) refers to the interaction poten-
tial between monomers, which diverges logarithmically when the polymer
is expanded or contracted from its equilibrium length [200]. Oldroyd-B,
on the other hand, uses a harmonic potential. For simplicity’s sake and
because it is widely studied, we will focus on Oldroyd-B, though the methods
discussed in this thesis can easily be extended to the more realistic models.
Oldroyd-B’s 𝞽 corresponds to the conformation tensor of the constituent
polymers, averaged over a small control volume [201]. It makes several
strongly simplifying assumptions about the fluid, including that it is made
up of dumbbell polymers with zero equilibrium length and that these are
very dilute [202, 203], to arrive at the following constitutive equation:

∂
∂𝑡

𝜏𝑖𝑗(𝒓, 𝑡) = −
𝑑

∑
𝑘=1

𝑢𝑘(𝒓, 𝑡) ∂
∂𝑟𝑘

𝜏𝑖𝑗(𝒓, 𝑡)

+
𝑑

∑
𝑘=1

𝜏𝑖𝑘(𝒓, 𝑡) ∂
∂𝑟𝑘

𝑢𝑗(𝒓, 𝑡) +
𝑑

∑
𝑘=1

𝜏𝑘𝑗(𝒓, 𝑡) ∂
∂𝑟𝑘

𝑢𝑖(𝒓, 𝑡)

+
𝜂p

𝜆p
( ∂

∂𝑟𝑖
𝑢𝑗(𝒓, 𝑡) + ∂

∂𝑟𝑗
𝑢𝑖(𝒓, 𝑡)) − 1

𝜆p
𝜏𝑖𝑗(𝒓, 𝑡). (2.17)

Here, the first term corresponds to advection, the next two terms are due
to the polymers being stretched by the velocity gradient, and the final two
terms represent the polymer relaxation. 𝜆p is the relaxation time of the
polymers, while 𝜂p refers to the viscosity added to the fluid by their presence
and is in first order proportional to the polymer concentration. For use with
the finite volume (FV) scheme in section 4.2.3, flux and source terms are
identified in order to re-cast equation 2.17 as a conservation law:

∂
∂𝑡

𝜏𝑖𝑗(𝒓, 𝑡) = − ∂
∂𝑟𝑘

𝐽𝑖𝑗𝑘(𝒓, 𝑡) + 𝑆𝑖𝑗(𝒓, 𝑡) (2.18)

𝐽𝑖𝑗𝑘(𝒓, 𝑡) = 𝑢𝑘(𝒓, 𝑡)𝜏𝑖𝑗(𝒓, 𝑡) (2.19)
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𝑆𝑖𝑗(𝒓, 𝑡) = 𝜏𝑖𝑗(𝒓, 𝑡)
𝑑

∑
𝑘=1

∂
∂𝑟𝑘

𝑢𝑘(𝒓, 𝑡)
⏟⏟⏟⏟⏟⏟⏟

=0 per equation 2.10

+
𝑑

∑
𝑘=1

𝜏𝑖𝑘(𝒓, 𝑡) ∂
∂𝑟𝑘

𝑢𝑗(𝒓, 𝑡) +
𝑑

∑
𝑘=1

𝜏𝑘𝑗(𝒓, 𝑡) ∂
∂𝑟𝑘

𝑢𝑖(𝒓, 𝑡)

+
𝜂p

𝜆p
( ∂

∂𝑟𝑖
𝑢𝑗(𝒓, 𝑡) + ∂

∂𝑟𝑗
𝑢𝑖(𝒓, 𝑡)) − 1

𝜆p
𝜏𝑖𝑗(𝒓, 𝑡). (2.20)

2.2 Electrokinetic equations
The electrokinetic equations for bulk electrolytes describe the motion of a
charged solute in a solvent fluid by a diffusion-advection process. They can
be constructed by considering the conservation of mass and all the forces
acting on the solute.

2.2.1 Diffusion-advection-migration processes
Let us take a similar approach as in section 2.1.1 and consider the solute in
a small volume of fluid 𝑉0. The solute concentration is 𝜌𝑘, where the 𝑘 runs
over the different solute species. Any change of the amount of solute inside
this small volume is due to a flux 𝒋𝑘 through ∂𝑉0, the control volume’s
surface. This may be expressed as

∂
∂𝑡

∫
𝑉0

𝜌𝑘(𝒓, 𝑡)d𝑑𝑟 = − ∫
∂𝑉0

𝒋𝑘(𝒓, 𝑡) ⋅ �̂�d𝑑−1𝑟. (2.21)

The surface integral may be transformed into a volume integral using Gauß’s
divergence theorem to obtain

∂
∂𝑡

∫
𝑉0

𝜌𝑘(𝒓, 𝑡)d𝑑𝑟 = − ∫
𝑉0

𝛁 ⋅ 𝒋𝑘(𝒓, 𝑡)d𝑑𝑟. (2.22)

This expression holds for arbitrary 𝑉0, so the conservation law for the amount
of solute may also be written in differential form,

∂
∂𝑡

𝜌𝑘(𝒓, 𝑡) = −𝛁 ⋅ 𝒋𝑘(𝒓, 𝑡). (2.23)

This expression is often referred to as continuity equation for the solute.
To obtain the precise form of 𝒋𝑘, we consider the effects that may move

solute through the fluid. From Fick’s law of diffusion [204], it is known
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2.2 Electrokinetic equations

that thermal fluctuations even out any concentration differences in a fashion
proportional to the concentration gradient. The proportionality constant for
this is the diffusion coefficient 𝐷𝑘. Next, let us consider what happens when
the solvent flows with a velocity of 𝒖. The diffusion process happens in the
reference frame co-moving with the fluid, so in the laboratory frame the
solute moves with an additional velocity of 𝒖. A Galilean transformation thus
leads to the advective flux of 𝜌𝑘𝒖. Similarly, a force 𝑭 applied to the solute
moves it with velocity 𝜇𝑘𝑭, where 𝜇𝑘 is the mobility. In an electric potential
𝛷, we have 𝑭 = 𝑧𝑘𝑒∇𝛷 with 𝑧𝑘 the ionic valency and 𝑒 the unit charge. The
mobility is given by the Einstein-Smoluchowski relation 𝐷𝑘 = 𝜇𝑘𝑘B𝑇 with
𝑘B being Boltzmann’s constant and 𝑇 the absolute temperature [205, 206].
The complete expression for the flux thus is

𝒋𝑘(𝒓, 𝑡) = − 𝐷𝑘𝛁𝜌𝑘(𝒓, 𝑡) − 𝐷𝑘
𝑘B𝑇

𝑧𝑘𝑒𝜌𝑘(𝒓, 𝑡)𝛁𝛷(𝒓, 𝑡)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝒋diff
𝑘

+𝜌𝑘(𝒓, 𝑡)𝒖(𝒓, 𝑡)
⏟⏟⏟⏟⏟

𝒋adv
𝑘

.

(2.24)
𝒋diff

𝑘 is the Nernst-Planck equation, while in combination with equation 2.26
it is referred to as Poisson-Nernst-Planck.

The electrostatic potential 𝛷 of the total charge

𝜌total(𝒓, 𝑡) = ∑
𝑘

𝑧𝑘𝑒𝜌𝑘(𝒓, 𝑡) (2.25)

is given by Poisson’s equation

∇2𝛷(𝒓, 𝑡) = − 1
𝜀0𝜀r

𝜌total(𝒓, 𝑡) = −4𝜋𝜆B𝑘B𝑇
𝑒

∑
𝑘

𝑧𝑘𝜌𝑘(𝒓, 𝑡), (2.26)

with the Bjerrum length

𝜆B = 𝑒2

4𝜋𝜀0𝜀r𝑘B𝑇
. (2.27)

A spatially homogeneous dielectric permittivity 𝜀0𝜀r is assumed here. The
Bjerrum length gives the distance at which the magnitude of the interac-
tion between two unit charges equals thermal energy. For water at room
temperature, 𝜆B = 0.7 nm.

Note that the construction of equation 2.24 contains several simplifying
assumptions. The first one is that we require 𝐷𝑘 to be a constant for each
solute species. In reality however, its value depends on the surrounding fluid.
For the purposes of this thesis, we may limit ourselves to water, but even
there the diffusivity of one solute species may be affected by the presence
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2 Theoretical background

of other solute species. Formally, we have thus set the self-diffusivity to
𝐷𝑘 and the cross-diffusivity to zero. The second assumption is that the
electrostatic contribution to equation 2.24 decouples for the different 𝑘. As
pointed out by Gupta et al. [207], this common simplification means that
in the absence of an external field, each electrolyte needs to fulfill the local
electroneutrality condition individually instead of collectively. Thus, if one of
the ions has a much higher diffusivity than the others, the model will predict
it to diffuse too slowly [207]. The final assumption lies in the construction
of equation 2.10, which neglects the contribution of the solute to the total
mass, but this is reasonable at solute concentrations up to several mol L−1

[208].
The force density couples the motion of the fluid to the dynamics of the

solutes via the following equation [209]:

𝑭(𝒓, 𝑡) = 𝑘𝐵𝑇 ∑
𝑘

𝒋diff
𝑘 (𝒓, 𝑡)

𝐷𝑘
. (2.28)

This represents a frictional coupling proportional to the relative velocities
of fluid and ions.

2.2.2 Poisson-Boltzmann theory
The electrokinetic equations of section 2.2.1 have a well-known solution:
Poisson-Boltzmann (PB) theory. In equilibrium, there are no fluxes, 𝒋𝑘 = 0,
and the net flow is zero, 𝒖 = 0. Under these conditions, the solution of
equation 2.24 is a Boltzmann-distributed solute concentration:

𝜌𝑘(𝒓, 𝑡) = 𝜌0
𝑘 exp(−𝑧𝑘𝑒(𝛷(𝒓, 𝑡) − 𝛷0)

𝑘𝐵𝑇
) (2.29)

with 𝜌0
𝑘 and 𝛷0 the concentration and potential at a reference location.

Typically, the bulk concentration, i.e. at 𝑟 → ∞ or far away from any
charged surfaces or objects, is used for 𝜌0

𝑘, and the potential there is defined
to be 𝛷0 = 0.

Inserting equation 2.29 into the Poisson equation 2.26 yields the PB
equation [210, 211]:

∇2𝛷 = − ∑
𝑘

𝜌0
𝑘𝑧𝑘𝑒
𝜀0𝜀r

exp(−𝑧𝑘𝑒(𝛷(𝒓, 𝑡) − 𝛷0)
𝑘𝐵𝑇

) . (2.30)

For the most common case of a monovalent salt solution, (𝜌0
+ = 𝜌0

− = 𝑐0
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2.2 Electrokinetic equations

and 𝑧+ = −𝑧− = 1), this simplifies to

∇2𝛷 = 2𝑐0𝑒
𝜀0𝜀r

sinh(𝑒(𝛷(𝒓, 𝑡) − 𝛷0)
𝑘𝐵𝑇

) . (2.31)

Expanding equation 2.30 in terms of 𝛷 around the reference potential 𝛷0
yields the Debye-Hückel approximation [212]:

∇2𝛷 ≈ − ∑
𝑘

𝜌0
𝑘𝑧𝑘𝑒
𝜀0𝜀r

+ ∑
𝑘

𝜌0
𝑘𝑧2

𝑘𝑒2

𝜀0𝜀r𝑘B𝑇
(𝛷(𝒓, 𝑡) − 𝛷0) (2.32)

= 𝛷(𝒓, 𝑡) − 𝛷0
𝜆2

D
. (2.33)

The first term in equation 2.32 is zero due to electroneutrality, and the
second term can be simplified by introducing the Debye length

𝜆D = 1

√∑
𝑘

𝜌0
𝑘𝑧2

𝑘𝑒2

𝜀0𝜀r𝑘B𝑇

, (2.34)

which is the characteristic decay length of the electrostatic potential obtained
as a solution to equation 2.32. It is also the characteristic length scale on
which the charge distribution decays when moving away from a charged
surface, as illustrated in figure 2.1. The layer of opposite-signed solute
charge surrounding a charged object is called “diffuse layer”. It partially
compensates, or screens, the object’s charge, which limits its electrostatic
influence to within a few Debye lengths. This effective interaction range is
between 3 ⋅10−10 m and 10−8 m for concentrations in the most relevant range
of 1 mol L−1 to 10−3 mol L−1. The diffuse layer is one of the two parts of the
electric double layer, the other one being the Stern layer, which consists of
counterions loosely associated to the surface.

2.2.3 Diffusion-reaction processes
Chemical reactions taking place in the bulk fluid modify equation 2.23 by
adding a source term that couples the different 𝜌𝑘 to each other. This source
term is

𝑅𝑘(𝒓, 𝑡) = 𝛾(𝒓, 𝑡)𝑠𝑘, (2.35)

with the reaction rate 𝛾 and the stoichiometric coefficients 𝒔 = {−𝑎, −𝑏,… ,
𝑐, 𝑑, … }, which correspond to a chemical reaction 𝑎A+𝑏B+… ⇋ 𝑐C+𝑑D+
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Figure 2.1: Illustration of the diffuse layer: at a charged surface (here indi-
cated with +), the counterions (here −) assume an exponential distribution
with a characteristic decay length corresponding to the Debye length 𝜆D.
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… [213]. The reaction rate generally depends on the available concentrations
of reactants via

𝛾(𝒓, 𝑡) = 𝛤 ∏
𝑘∈{𝑎,𝑏,…}

(𝜌𝑘(𝒓, 𝑡))𝑜𝑘 , (2.36)

where 𝑜𝑘 is the reaction order and 𝛤 the reaction rate constant. In most
cases, 𝑜𝑘 = |𝑠𝑘|. Note that the units of 𝛤 depend on the number of reactants
involved and that the product only runs over the reactants.

2.3 Boundary conditions
To obtain unique solutions to the differential equations specified in the
preceding sections, appropriate boundary conditions need to be specified.

2.3.1 Boundary conditions for fluid dynamics
For the Stokes equations 2.10 and 2.15, we will specify the flow velocity in
the laboratory frame, e.g. the no-slip condition

𝒖(𝒓)∣
boundary

≡ 0, (2.37)

on a wall or a specific surface velocity profile on a particle

𝒖(𝒓)∣
boundary

≡ 𝒖(𝒓b), (2.38)

where 𝒓b lies on the boundary. The no-slip condition comes from the
macroscopic observation that fluid sticks to surfaces. This is not necessarily
true on the microscopic scale as the surface friction may be finite and vary,
for example, with the surface’s hydrophobicity [214–217]. In this case, a
distance from the surface may be specified at which the flow velocity is zero,
or equivalently an effective surface velocity at the surface. When no absolute
but only relative velocities are given, such as when a swimmer propels itself
through a fluid in the absence of walls, it is also necessary to specify that
the overall fluid container is not moving, i.e.

lim
𝑟→∞

𝒖(𝒓) ≡ 0. (2.39)

It is not necessary to specify a separate boundary condition for the
viscoelastic stress equation 2.17 as it is fully defined by the velocity boundary
condition. The stress on the boundary is also generally not known a priori.
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2.3.2 Boundary conditions for electrokinetics
For the Nernst-Planck equation 2.24, a flux needs to be specified at any
surface. Usually this is a no-flux condition,

𝒋𝑘(𝒓)∣
boundary

≡ 0. (2.40)

A reaction catalyzed by a surface may be specified as a virtual flux through
the surface with normal �̂�, which tends to be mathematically more convenient
than expressing this reaction as a source term for equation 2.35 [213]:

�̂� ⋅ 𝒋𝑘(𝒓)∣
boundary

≡ 𝜌cat(𝒓b, 𝑡)𝑅𝑘(𝒓, 𝑡), (2.41)

with 𝜌cat the catalyst concentration on the boundary and 𝑅𝑘 given by
equation 2.35. Sometimes it is convenient to ignore these details of the
reaction and instead model the reaction using an effective flux through the
surface [35, 101, 213]:

�̂� ⋅ 𝒋𝑘(𝒓)∣
boundary

≡ 𝑗𝑘,b(�̂�). (2.42)

The Poisson equation 2.26 does need a boundary condition in our case
as we do not prescribe the potential on walls or swimmers, but instead
explicitly consider them as part of the charge distribution equation 2.25.
Uniqueness of the solution is guaranteed by the assumption that the system
is charge-neutral,

∫
𝑉

𝜌total(𝒓, 𝑡)d3𝑟 = 0, (2.43)

where the integral goes over the entire simulation domain. In periodic
boundary conditions, this condition is necessary as otherwise the electrostatic
potential will become infinite [218].

2.4 Squirmers
Theoretical descriptions often use simple swimmer models that describe
only the resulting hydrodynamic flow in a far-field approximation, which
eliminates the complex details of a microswimmer’s propulsion method.
As self-propulsion is force-free [47, 219], the lowest nonzero term of its
hydrodynamic multipole expansion is the dipole. It arises from the propulsion
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force of the swimmer and the drag force exerted on it by the fluid, which are
equal in magnitude but opposite in direction [220]. Only external fields like
gravity would have a monopolar effect on the swimmer, so in experiments
care must be taken to eliminate their influence. The force dipole decays
with distance as 𝑟−2, which justifies the often-applied truncation beyond
this order. Point dipoles are, however, difficult to handle numerically, due to
their inherent divergences [170, 221], while extended dipoles are inconvenient
to analytic theory. The divergences can be mitigated by regularization [170,
222], but this is only possible for simple cases like Stokes flow (equations 2.10
and 2.15) and not for arbitrary fluids such as those that will be used in
chapter 7.

A widely used model that can account for finite sizes of the swimmer is the
squirmer model. Lighthill [20] originally introduced it to explain swimming
by an oscillatory shape change. Blake [21] later used it to describe the
microorganism Paramecium, which propels via a specific beat pattern of
the cilia on its surface. Both authors expanded the flow at the swimmer’s
surface into spherical harmonics and discovered that the first two modes
are sufficient to characterize the resulting flow. If the squirmer is rigid and
impermeable, radial flow through the surface can further be ignored [148],
so that the motion of cilia on the surface of a sphere of radius 𝑅S can be
described by the envelope [21]

𝒖(𝒓)∣
|𝒓−𝒓S|=𝑅S

= (𝐵1 + 𝐵2
̂𝒆 ⋅ (𝒓 − 𝒓S)
|𝒓 − 𝒓S|

)( ̂𝒆 ⋅ (𝒓 − 𝒓S)
|𝒓 − 𝒓S|

𝒓 − 𝒓S
|𝒓 − 𝒓S|

− ̂𝒆) ,

(2.44)
which is used as the boundary condition equation 2.38. Here, the squirmer’s
center is at 𝒓S, 𝐵1 and 𝐵2 are constants, and ̂𝒆 is the unit orientation vector
of the sphere.

The flow resulting from this boundary condition is governed by the Stokes
equations 2.10 and 2.15. Under the condition of equation 2.44, these are
solved by the flow field [21, 148]

𝒖S(𝒓) = 𝐵1
𝑅3

S
|𝒓 − 𝒓S|3

( ̂𝒆 ⋅ (𝒓 − 𝒓S)
|𝒓 − 𝒓S|

𝒓 − 𝒓S
|𝒓 − 𝒓S|

− 1
3

̂𝒆)

+ 𝐵2 (
𝑅4

S
|𝒓 − 𝒓S|4

−
𝑅2

S
|𝒓 − 𝒓S|2

)(3
2

( ̂𝒆 ⋅ (𝒓 − 𝒓S)
|𝒓 − 𝒓S|

)
2

− 1
2
) 𝒓 − 𝒓S

|𝒓 − 𝒓S|

+ 𝐵2
𝑅4

S
|𝒓 − 𝒓S|4

̂𝒆 ⋅ (𝒓 − 𝒓S)
|𝒓 − 𝒓S|

( ̂𝒆 ⋅ (𝒓 − 𝒓S)
|𝒓 − 𝒓S|

𝒓 − 𝒓S
|𝒓 − 𝒓S|

− ̂𝒆) (2.45)

in the laboratory frame. This corresponds to the squirmer moving with a
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Figure 2.2: The three types of squirmers: pusher (top, 𝛽 < 0), neutral
(middle, 𝛽 = 0), and puller (bottom, 𝛽 > 0).
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velocity [21, 148] of

𝒗0 = 2
3
𝐵1 ̂𝒆, (2.46)

i.e., a velocity that depends only on the first mode and points in the direction
of the squirmer’s orientation vector ̂𝒆. Micrometer-sized swimmers in water
exist in the low-Re limit according to equation 2.49, thus 𝑣0 only sets the
time scale without changing the physical behavior. This makes it convenient
to scale out 𝑣0 and introduce the dipolarity

𝛽 = 𝐵2
𝐵1

(2.47)

as the ratio of the magnitudes of the second and first moment.
𝛽 classifies the shape of the flow field, with the sign distinguishing three

different kinds of swimmers. A pusher with 𝛽 < 0 pushes fluid away from
its front and back (with ̂𝒆 pointing forward) and draws fluid in from its
sides. A puller with 𝛽 > 0 pulls fluid toward itself at front and back,
pushing it away from its sides. At the transition point 𝛽 = 0 lies the neutral
squirmer, which moves fluid from front to back. Figure 2.2 illustrates these
three types of squirmer. Biological examples of these three classes include
Escherichia coli [49], Chlamydomonas reinhardtii [223], and Paramecium
[224], respectively. The propulsion details of a chemical microswimmer can
sometimes be mapped onto effective values of 𝑣0 and 𝛽 [154, 156].

2.5 Dimensionless numbers
It is common practice in fluid mechanics to introduce certain dimensionless
numbers. Many phenomena do not depend on precise parameter values, but
rather on the relative significance of individual physical effects. The purpose
of the present section is to summarize those that are most relevant to this
thesis.

Several of these numbers have already been given in section 2.1 and are
reproduced here for convenience. The Mach number,

Ma = 𝑈
𝑐s

, (2.48)

gives the ratio between the maximal velocity 𝑈 and the speed of sound
𝑐s. When Ma ≪ 1, incompressibility may be assumed as we have done
in sections 2.1.2 and 2.1.3. This requirement is always fulfilled in soft
matter physics. Certain simulation methods, like lattice Boltzmann (LB)
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(section 4.1) or multi-particle collision dynamics (MPCD) [225, 226], in-
troduce their own speed of sound, which is generally much lower than the
physical one, so care must be taken to ensure that Ma ≪ 1 is fulfilled even
in simulation. The Reynolds number gives the ratio of inertial forces to
viscous forces:

Re = 𝜌𝑈𝐿
𝜂

, (2.49)

where 𝐿 is a characteristic length scale of the flow and 𝑈 a characteristic
velocity. Re represents the relative importance of inertia. The Stokes
equations of section 2.1.3 are only valid in the limit of Re ≪ 1. For
microscale flow, this is generally fulfilled as 𝐿 is in the range of 10−9 m to
10−3 m, 𝑈 is on the order of 𝐿s−1, 𝜌 has a similar order of magnitude as
that of water, and 𝜂 is similar as or higher than for water. The Strouhal
number,

St = 𝐿
𝑈𝑇

= 𝐿 ̇𝛾
𝑈

, (2.50)

gives the ratio of the convective time scale to the characteristic time scale 𝑇
of the flow. The product ReSt is also called unsteady Reynolds number
[227], oscillatory Reynolds number [79, 228], or Roshko number [229] and
describes the relative significance of transient effects. Typically, St ≪ Re−1,
which permits the use of the time-independent Stokes equation 2.15. For
flows periodically driven at a sufficiently high frequency ̇𝛾, it is possible to
violate this requirement, in which case the unsteady Stokes equation 2.14
would need to be used [191]. This is not the case for the purposes of this
thesis, but becomes relevant, for example, in the context of cilia and flagella
[227] or flapping [79, 228].

Turning to viscoelastic fluids, the Deborah number is determined by the
ratio of the elastic relaxation time to the characteristic time scale of the
flow [230]:

De =
𝜆p𝑈
𝐿

, (2.51)

thus representing the degree of elasticity in response to a deformation. The
Weissenberg number relates the elastic relaxation time to the characteristic
rate at which the deformation is driven [230]:

Wi = 𝜆p ̇𝛾. (2.52)

For an illustration of the difference between these two numbers in a simple
cross-slot geometry, see figure 2.3. In many geometries, De and Wi are
connected, sometimes even equal, and as a result they are commonly confused
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𝑊in

𝑊out

𝑈in 𝑈in

𝑈out

𝑈out

De =
𝜆p𝑈out

𝑊out

Wi =
𝜆p𝑈in

𝑊in

Figure 2.3: Schematic of the cross-slot geometry to illustrate Weissenberg
and Deborah numbers. Wi is calculated based on the flow driven with
velocity 𝑈in into the inlet channel of width 𝑊in. De is calculated based on
the resulting flow with velocity 𝑈out out of the outlet channel of width 𝑊out.
In this geometry, the two velocities are proportional due to mass conservation,
𝑈out = 𝑈in𝑊in/𝑊out, yielding a simple proportionality between De and Wi,
but such a connection between the two dimensionless numbers does not exist
in general.
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in literature [230]. It is convenient to introduce the polymer viscosity fraction

𝜉 =
𝜂p

𝜂
, (2.53)

which can easily be varied while keeping the total viscosity

𝜂 = 𝜂n + 𝜂p (2.54)

constant.
Turning to electrokinetic phenomena, the Péclet number gives the ratio

of advective to diffusive transport:

Pe = 𝐿𝑈
𝐷

(2.55)

with the diffusion coefficient 𝐷.
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3 Semi-analytic methods
There are many different ways to solve the equations from chapter 2. Be-
fore moving on to a full numerical treatment in chapter 4, where generic
and powerful computational methods will be introduced, let us discuss a
simplified, semi-analytic approach. Here, it is necessary to identify only the
most relevant physical aspects of a problem and absorb all the details into
effective interactions.

This chapter introduces the Green’s function for the Stokes equations 2.10
and 2.15 in section 3.1, which is the solution for a point-force applied to bulk
fluid. The squirmer of section 2.4 is then decomposed into its hydrodynamic
modes in section 3.2, which can be expressed as derivatives of the Green’s
function. The influence of a flat wall, spherical obstacle, or spherical cavity
can be determined by the method of reflections as introduced in section 3.3.
Faxén’s laws in section 3.4 then gives us the effect that the resulting flow has
on the squirmer, which can be used construct its trajectory in section 3.5.
Section 3.6 will conclude by drawing a comparison between the hydrodynamic
modes and the more familiar electrostatic multipoles.

3.1 Oseen tensor
We first consider a Stokeslet [231, 232], the solution to equations 2.10
and 2.15 for a flow due to a force monopole 𝑭 applied at 𝒓S:

𝒖FM(𝒓, 𝒓S, 𝑭 ) = 1
8𝜋𝜂n

𝙈(𝒓, 𝒓S)𝑭 (3.1)

with the Oseen tensor [233]

𝙈(𝒓, 𝒓S) = 1
|𝒓 − 𝒓S|

(𝟙 + (𝒓 − 𝒓S) ⊗ (𝒓 − 𝒓S)
|𝒓 − 𝒓S|2

). (3.2)

As before, ⊗ is the dyadic product. The Stokeslet is the Green’s function
to the Stokes equations. For different ways of deriving it, see reference 234;
the most elegant one is based on fundamental properties of the Laplace and
biharmonic functions [235].
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3 Semi-analytic methods

3.2 Hydrodynamic mode decomposition
The flows of the higher hydrodynamic moments can be obtained from the
Stokeslet equation 3.1 by differentiation [235–237]. For the force dipole,
source dipole, and source quadrupole, this yields

𝒖FD(𝒓, 𝒓S, 𝑭 , 𝑭FD) = − (𝛁S ⊗ 𝒖FM(𝒓, 𝒓S, 𝑭 ))⊺ 𝑭FD, (3.3)

𝒖SD(𝒓, 𝒓S, 𝑭SD) = −1
2
∇2

S𝒖FM(𝒓, 𝒓S, 𝑭SD), (3.4)

𝒖SQ(𝒓, 𝒓S, 𝑭SD, 𝑭SQ) = 1
3

(𝛁S ⊗ 𝒖SD(𝒓, 𝒓S, 𝑭SD))⊺ 𝑭SQ, (3.5)

respectively. Here, the subscript S on the differential operators refers to
differentiation with respect to 𝒓S. 𝑭FD, 𝑭SD, and 𝑭SQ give the direction of
infinitesimal displacement between two point forces, point sources, or source
dipoles, respectively. For purposes of this thesis, these vectors will usually
coincide, so we define

𝒖FM(𝒓, 𝒓S) = 𝒖FM(𝒓, 𝒓S, 𝑭 ), (3.6)
𝒖FD(𝒓, 𝒓S) = 𝒖FD(𝒓, 𝒓S, 𝑭 , 𝑭 ), (3.7)
𝒖SD(𝒓, 𝒓S) = 𝒖SD(𝒓, 𝒓S, 𝑭 ), (3.8)
𝒖SQ(𝒓, 𝒓S) = 𝒖SQ(𝒓, 𝒓S, 𝑭 , 𝑭 ). (3.9)

We can write the squirmer flow in terms of the multipole moments by
identifying them in equation 2.45:

𝒖S(𝒓) = 8𝜋𝜂n
3

𝐵1𝑅3
S𝒖SD(𝒓, 𝒓S) + 8𝜋𝜂n

2
𝐵2𝑅2

S𝒖FD(𝒓, 𝒓S)

+ 8𝜋𝜂n
2

𝐵2𝑅4
S𝒖SQ(𝒓, 𝒓S) (3.10)

with 𝑭 = ̂𝒆. This decomposition is illustrated by figure 3.1: a squirmer’s
flow field is composed of a source dipole with 𝑟−3 decay and the prefactor 𝐵1,
a force dipole with 𝑟−2 decay and a prefactor of 𝐵2, and a source quadrupole
with 𝑟−4 decay and the same 𝐵2 prefactor.

3.3 Method of reflections
The expressions of section 2.4 are valid in bulk only. The presence of a solid
boundary can be incorporated via the method of reflections [238]. Here, a
virtual flow originating from inside the obstacle is introduced. Its purpose
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= 𝑣0
𝑟3 + 𝑣0𝛽

𝑟2 + 𝑣0𝛽
𝑟4

Figure 3.1: The squirmer’s flow field is comprised of a source dipole, a
force dipole, and a source quadrupole as per equation 3.10.
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is to ensure fulfillment of the no-slip boundary condition equation 2.37
on the obstacle’s surface. We can limit ourselves to obtaining the image
of the Stokeslet 𝒖FM(𝒓, 𝒓S) as section 3.2 permits to express any higher
hydrodynamic modes in terms of a Stokeslet.

3.3.1 Reflection at a flat wall
For a flat wall, which without loss of generality we assume to be located
at 𝑧 = 0, this leads to the Blake tensor 𝘽(𝒓, 𝒓S). It is added to the Oseen
tensor of equation 3.2 by the presence of a wall. It is a superposition of a
force monopole, a source dipole, and two force dipoles [221, 239, 240],

ℛwall𝒖FM(𝒓, 𝒓S) = 𝘽(𝒓, 𝒓S)𝑭 (3.11)
= −𝒖FM(𝒓, 𝒓∗, 𝑭 ) + 2ℎ2𝒖SD(𝒓, 𝒓∗, 2𝐹𝑧 ̂𝒆𝑧 − 𝑭) (3.12)

− 2ℎ𝒖FD(𝒓, 𝒓∗, ̂𝒆𝑧, 𝑭 − 𝐹𝑧 ̂𝒆𝑧) + 2ℎ𝒖FD(𝒓, 𝒓∗, 𝐹𝑧 ̂𝒆𝑧, ̂𝒆𝑧).

These seemingly originate from a point 𝒓∗ on the other side of the wall and
at the same distance ℎ = 1

2 |𝒓∗ − 𝒓| from the wall as the Stokeslet. This
decomposition is illustrated in figure 3.2.

When 𝑭 is either parallel or perpendicular to the wall, one of the two force
dipoles becomes zero, so it is often claimed [240–243] that the Blake tensor
consists of a force monopole, only one force dipole, and a source dipole. A
similar claim [244, 245] is sometimes made that the Blake tensor consists
of a force monopole, a stresslet, and a source dipole, which is true when 𝑭
is parallel to the wall. The stresslet is a combination of a source monopole
and two force dipoles [237, 246].

3.3.2 Reflection at a sphere
The image Stokeslet for a no-slip sphere is [163, 233, 247]

ℛ𝒖FM(𝒓, 𝒓S) = 1
8𝜋𝜂n

ℛ𝙈(𝒓, 𝒓S)𝑭 (3.13)

with the reflection operator ℛ given as

ℛ𝙈(𝒓, 𝒓S) = − 𝑅
𝑟S𝑠∗

𝟙 − 𝑅3

𝑟3
S𝑠3

∗
𝒔∗ ⊗ 𝒔∗ −

(𝑟2 − 𝑅2)(𝑟2
S − 𝑅2)

2𝑟3
S

𝛷 −
𝑟2
S − 𝑅2

𝑟S
×

( 1
𝑅3𝑠∗

𝒓∗ ⊗ 𝒓∗ − 𝑅
𝑟2
S𝑠3

∗
(𝒓∗ ⊗ 𝒔∗ + 𝒔∗ ⊗ 𝒓∗) + 2𝒓∗ ⋅ 𝒔∗

𝑅3𝑠3
∗

𝒓∗ ⊗ 𝒓∗) .

(3.14)

48



3.3 Method of reflections

1
𝑟 +

= 1
𝑟 + 𝒪(𝑟−1)

= 1
𝑟 + 1

𝑟 + 1
𝑟3

+ 1
𝑟2 + 1

𝑟2

Figure 3.2: The Blake tensor, the image of the force monopole that obeys
a no-slip condition on a wall, is comprised of a force monopole, a source
dipole, and two force dipoles as per equation 3.12. The flow inside the
shaded area, i.e. on the other side of the wall, has no physical reality, but is
a mathematical tool to fulfill the boundary condition on the wall.
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Here, for 𝑟S > 𝑅:

𝛷 = − 3
𝑅𝑠3

∗
𝒔∗ ⊗ 𝒓S + 𝑅

𝑠3
∗
𝟙 − 3𝑅

𝑠5
∗

𝒔∗ ⊗ 𝒔∗ − 2
𝑅𝑠3

∗
𝒓∗ ⊗ 𝒓S + 6𝒓∗ ⋅ 𝒔∗

𝑅𝑠5
∗

𝒔∗ ⊗ 𝒓S

+ 3𝑅
𝑠∗𝑟∗ + 𝒓 ⋅ 𝒓∗ − 𝑟2

∗
( 1

𝑟2
∗𝑠∗

𝒔∗ ⊗ 𝒓∗ + 1
𝑠3

∗
𝒔∗ ⊗ 𝒔∗ + 𝑠∗ − 𝑟∗

𝑟∗𝑠∗
𝟙)

−
3𝑅 (𝑟∗𝒔∗ + 𝑠∗𝒓∗) ⊗ (𝑠∗𝒓S − 𝑟2

∗𝒔∗ + 𝑠∗𝑟∗ (𝒓 − 2𝒓∗))
𝑟2
∗𝑠2

∗ (𝑠∗𝑟∗ + 𝒓 ⋅ 𝒓∗ − 𝑟2
∗ )

2

− 3𝑅 (𝒓 ⊗ 𝒓∗ + 𝑟𝑟∗𝟙)
𝑟2
∗𝑟 (𝑟𝑟∗ + 𝒓 ⋅ 𝒓∗)

+ 3𝑅 (𝑟∗𝒓 + 𝑟𝒓∗) ⊗ (𝑟∗𝒓 + 𝑟𝒓∗)
𝑟2
∗𝑟 (𝑟𝑟∗ + 𝒓 ⋅ 𝒓∗)

2 , (3.15)

and for 𝑟S < 𝑅:

𝛷 = − 6𝑟2
∗

𝑅𝑠5
∗
𝒔∗ ⊗ 𝒓S + 𝑅

𝑠3
∗
𝟙 + 3𝑅

𝑠5
∗

𝒔∗ ⊗ 𝒔∗ − 2
𝑅𝑠3

∗
𝒓∗ ⊗ 𝒓S + 6𝒓 ⋅ 𝒓∗

𝑅𝑠5
∗

𝒔∗ ⊗ 𝒓S

−
3 ((𝑠∗𝑟S − 𝑅2) 𝒓 ⋅ 𝒓S + 𝑟2𝑟2

S)
𝑟2
S𝑠3

∗ (𝑟2𝑟2
∗ − (𝒓 ⋅ 𝒓∗)

2)
𝒔∗ ⊗ (𝑅2𝒓 − 𝒓S𝒓 ⋅ 𝒓∗)

+ (𝒔∗𝒓 ⋅ 𝒓S
𝑠∗𝑟S

+
(𝑠∗𝑟S − 𝑅2) 𝒓S

𝑟2
S

+ 2𝒓) ⊗
3 (𝑅2𝒓 − 𝒓S𝒓 ⋅ 𝒓∗)

𝑅𝑠∗ (𝑟2𝑟2
∗ − (𝒓 ⋅ 𝒓∗)

2)

−
3 ((𝑠∗𝑟S − 𝑅2) 𝒓 ⋅ 𝒓S + 𝑟2𝑟2

S)
𝑅𝑟2

S𝑠∗ (𝑟2𝑟2
∗ − (𝒓 ⋅ 𝒓∗)

2)
(𝒓∗ ⊗ 𝒓S − 𝑅2𝟙)

−
3 ((𝑠∗𝑟S − 𝑅2) 𝒓 ⋅ 𝒓S + 𝑟2𝑟2

S)

𝑅𝑟2
S𝑠∗ (𝑟2𝑟2

∗ − (𝒓 ⋅ 𝒓∗)
2)

2 (2𝑟2
∗𝒓 − 2𝒓 ⋅ 𝒓∗𝒓∗) ⊗ (𝑅2𝒓 − 𝒓S𝒓 ⋅ 𝒓∗) ,

(3.16)

where the variables 𝒓∗ = (𝑅2/𝑟2
S)𝒓S and 𝒔∗ = 𝒓 − 𝒓∗ have been introduced.

For the limiting case of a flat wall (𝑅 → ∞), the former has the geometric
interpretation of the location of the image Stokeslet as in equation 3.12.

Similar expressions are also available for a source monopole near a flat
wall [248] and near a sphere [249]. Equation 3.12 for the reflection by a flat
wall is recovered from equation 3.13 by expanding around 𝑅−1 = 0. The
expansion reveals that corrections are to leading order linear in the inverse
radius.
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We finally obtain the image squirmer,

ℛ𝒖S(𝒓) = 8𝜋𝜂n
3

𝐵1𝑅3
Sℛ𝒖SD(𝒓, 𝒓S) + 8𝜋𝜂n

2
𝐵2𝑅2

Sℛ𝒖FD(𝒓, 𝒓S)

+ 8𝜋𝜂n
2

𝐵2𝑅4
Sℛ𝒖SQ(𝒓, 𝒓S). (3.17)

One can exploit the linearity of the Stokes equation to change the order of
operations. That is, we first apply the known reflection of equation 3.13
and then perform the differentiation of equations 3.3 to 3.5 [250]:

= −8𝜋𝜂n
6

𝐵1𝑅3
S∇2

S (ℛ𝒖FM(𝒓, 𝒓S))

− 8𝜋𝜂n
2

𝐵2𝑅2
S (𝛁S ⊗ (ℛ𝒖FM(𝒓, 𝒓S))) 𝑭

− 𝜋𝜂n𝐵2𝑅4
S (𝛁S ⊗ ∇2

S (ℛ𝒖FM(𝒓, 𝒓S))) 𝑭 . (3.18)

The flow field
𝒖(𝒓) = 𝒖S(𝒓) + ℛ𝒖S(𝒓) (3.19)

fulfills the Stokes equations 2.10 and 2.15 and the no-slip boundary condition
equation 2.37 on the obstacle. It does not, however, exactly fulfill the slip
boundary condition equation 2.44 on the squirmer as this is not possible
with a single reflection. An infinite series of reflections at the obstacle’s
and squirmer’s surfaces would be required to respect both boundary con-
ditions simultaneously, so the presented approach only provides a far-field
approximation. It is also common practice to truncate equation 3.13 after
𝒪(𝑟4) to match the maximum order found in equation 2.45. In this case
the slip boundary condition equation 2.44 is not exactly fulfilled, but the
equations simplify considerably. For systems where equation 2.44 is only
considered a leading-order approximation to the true nature of the swimmer,
the truncation also serves to get a uniform error order.

3.4 Faxén’s laws
Now that we have the flow field, we can calculate the squirmer’s response
to it via Faxén’s laws [148, 251–254]. The first law states that a force-free
sphere at position 𝒓 moves with velocity

𝒗 = (1 +
𝑅2

S
6

∇2)𝒖(𝒓). (3.20)
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The second law gives the angular velocity of the sphere as

𝝎 = 1
2
𝛁 × 𝒖(𝒓). (3.21)

These laws are obtained from integrals over the surface of the sphere [255].
Conveniently, they give the full hydrodynamic effect on the sphere as a
simple center-of-mass linear and angular velocity. Equations 3.20 and 3.21
can be used to calculate the response of the squirmer to the reflected flow
ℛ𝒖S. Its response to 𝒖S cannot be calculated this way as the flow diverges
at 𝒓S; however, we already know from equation 2.46 that 𝒖S makes the
squirmer move with velocity 𝑣0 ̂𝒆. While equations 3.20 and 3.21 are series
expansions, all higher orders are zero for spheres in Stokes flow [252]. Faxén’s
third [253] and higher [256] laws are not needed as the squirmer is assumed
to be rigid. Extensions to spheroidal [257, 258] and ellipsoidal [259] bodies
are also available.

3.5 Integrating the squirmer’s trajectory
In sections 3.1 to 3.4, we have only given the analytic expressions for the
far-field hydrodynamics of a squirmer near a flat or curved wall. We now
resort to a simple numerical method to solve the associated trajectory of
the squirmer, as analytic solutions are not available. This requires choosing
values for the free parameters, which are the starting position and orientation
of the squirmer and the squirmer radius 𝑅S and dipolarity 𝛽. Due to the
symmetry of the problem, we can restrict ourselves to the 𝑧 = 0 plane, while
still considering the full three-dimensional problem. We can furthermore set
𝑅S = 1 without loss of generality as there are no externally-defined length
scales.

The flow field 𝒖(𝒓, 𝑡) due to the squirmer can be obtained from equa-
tion 3.19. All derivatives here are carried out analytically. The linear velocity
𝒗(𝑡) and angular velocity 𝝎(𝑡) of the squirmer is obtained from the flow via
Faxén’s equations 3.20 and 3.21. The derivatives in these are carried out
numerically via two-sided central finite differences to avoid further increasing
the number of terms in the expression, which is already approaching the limit
of what can be computed efficiently. The analytic form of these derivatives
is given in the following, though they were not obtained until after the
simulations for swimming near a sphere were completed. The analytic form
is required for the case of the cavity because singularities foil any attempt
of evaluating the finite differences directly.
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Integrating

the
squirm

er’s
trajectory

For 𝑟S > 𝑅:

8𝜋𝜂nℛ𝒖FM(𝒓S, 𝒓S) = −
3𝑅 (3𝑟2

S − 𝑅2)𝑭 ⋅ 𝒓S
4𝑟4

S (𝑟2
S − 𝑅2)

𝒓S −
3𝑅(𝑟2

S + 𝑅2)
4𝑟2

S (𝑟2
S − 𝑅2)

𝑭 (3.22)

8𝜋𝜂nℛ𝒖FD(𝒓S, 𝒓S) =
3𝑅 (𝐹 2𝑟6

S − (−3𝑅2𝑟2
S + 3𝑟4

S + 𝑅4) (𝑭 ⋅ 𝒓S)2)

2𝑟6
S (𝑟2

S − 𝑅2)2 𝒓S +
3𝑅3 (𝑅2 − 3𝑟2

S)𝑭 ⋅ 𝒓S

2𝑟4
S (𝑟2

S − 𝑅2)2 𝑭 (3.23)

8𝜋𝜂nℛ𝒖SD(𝒓S, 𝒓S) =
3𝑅 (−4𝑅2𝑟2

S − 5𝑟4
S + 𝑅4)𝑭 ⋅ 𝒓S

4𝑟4
S (𝑟2

S − 𝑅2)3 𝒓S +
𝑅(−8𝑅2𝑟4

S − 3𝑅4𝑟2
S + 3𝑟6

S)
4𝑟4

S (𝑟2
S − 𝑅2)3 𝑭 (3.24)

8𝜋𝜂nℛ𝒖SQ(𝒓S, 𝒓S) =
𝑅 (𝐹 2𝑟6

S (−3𝑟2
S − 7𝑅2) + (−5𝑅4𝑟2

S + 10𝑅2𝑟4
S + 12𝑟6

S + 𝑅6) (𝑭 ⋅ 𝒓S)2)

2𝑟6
S (𝑟2

S − 𝑅2)4 𝒓S

−
𝑅 (−5𝑅4𝑟2

S − 11𝑅2𝑟4
S + 3𝑟6

S + 𝑅6)𝑭 ⋅ 𝒓S

2𝑟4
S (𝑟2

S − 𝑅2)4 𝑭 (3.25)

8𝜋𝜂n ∇2ℛ𝒖FM(𝒓, 𝒓S)∣
𝒓=𝒓S

= −
3𝑅 (−4𝑅2𝑟2

S − 5𝑟4
S + 𝑅4)𝑭 ⋅ 𝒓S

2𝑟4
S (𝑟2

S − 𝑅2)3 𝒓S −
𝑅(−8𝑅2𝑟4

S − 3𝑅4𝑟2
S + 3𝑟6

S)
2𝑟4

S (𝑟2
S − 𝑅2)3 𝑭 (3.26)

8𝜋𝜂n ∇2ℛ𝒖FD(𝒓, 𝒓S)∣
𝒓=𝒓S

= −
3 (𝐹 2𝑅𝑟6

S (𝑟2
S + 5𝑅2) − 𝑅 (−4𝑅4𝑟2

S + 6𝑅2𝑟4
S + 3𝑟6

S + 𝑅6) (𝑭 ⋅ 𝒓S)2)

𝑟6
S (𝑟2

S − 𝑅2)4 𝒓S

−
3𝑅3 (−4𝑅2𝑟2

S − 9𝑟4
S + 𝑅4)𝑭 ⋅ 𝒓S

𝑟4
S (𝑟2

S − 𝑅2)4 𝑭 (3.27)

8𝜋𝜂n ∇2ℛ𝒖SD(𝒓, 𝒓S)∣
𝒓=𝒓S

=
3𝑅 (5𝑅4𝑟2

S + 25𝑅2𝑟4
S + 3𝑟6

S − 𝑅6)𝑭 ⋅ 𝒓S

2𝑟4
S (𝑟2

S − 𝑅2)5 𝒓S +
3𝑅(15𝑅4𝑟2

S + 15𝑅2𝑟4
S + 𝑟6

S + 𝑅6)
2𝑟2

S (𝑟2
S − 𝑅2)5 𝑭

(3.28)
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8𝜋𝜂n ∇2ℛ𝒖SQ(𝒓, 𝒓S)∣
𝒓=𝒓S

=
𝑅𝐹 2𝑟6

S (42𝑅2𝑟2
S + 3𝑟4

S + 35𝑅4)
(𝑟3

S − 𝑅2𝑟S)6 𝒓S

−
(−6𝑅7𝑟2

S + 15𝑅5𝑟4
S + 64𝑅3𝑟6

S + 6𝑅𝑟8
S + 𝑅9) (𝑭 ⋅ 𝒓S)2

(𝑟3
S − 𝑅2𝑟S)6 𝒓S

+
𝑅𝑟2

S (−6𝑅6𝑟2
S − 90𝑅4𝑟4

S − 62𝑅2𝑟6
S − 3𝑟8

S + 𝑅8)𝑭 ⋅ 𝒓S

(𝑟3
S − 𝑅2𝑟S)6 𝑭 (3.29)

8𝜋𝜂n 𝛁 × ℛ𝒖FM(𝒓, 𝒓S)|𝒓=𝒓S
= − 3𝑅

2𝑟2
S (𝑟2

S − 𝑅2)
𝑭 × 𝒓S (3.30)

8𝜋𝜂n 𝛁 × ℛ𝒖FD(𝒓, 𝒓S)|𝒓=𝒓S
= −

3𝑅3 (𝑅2 − 3𝑟2
S)𝑭 ⋅ 𝒓S

𝑟4
S (𝑟2

S − 𝑅2)3 𝑭 × 𝒓S (3.31)

8𝜋𝜂n 𝛁 × ℛ𝒖SD(𝒓, 𝒓S)|𝒓=𝒓S
=

3𝑅(6𝑅2𝑟2
S + 𝑟4

S + 𝑅4)
2𝑟2

S (𝑟2
S − 𝑅2)4 𝑭 × 𝒓S (3.32)

8𝜋𝜂n 𝛁 × ℛ𝒖SQ(𝒓, 𝒓S)∣
𝒓=𝒓S

=
𝑅(−5𝑅4𝑟2

S − 25𝑅2𝑟4
S − 3𝑟6

S + 𝑅6)𝑭 ⋅ 𝒓S

𝑟4
S (𝑟2

S − 𝑅2)5 𝑭 × 𝒓S. (3.33)
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For 𝑟S < 𝑅:

8𝜋𝜂nℛ𝒖FM(𝒓S, 𝒓S) = −
3 (𝑟2

S − 3𝑅2) 𝑭 ⋅ 𝒓S
4𝑅3 (𝑟2

S − 𝑅2)
𝒓S +

3 (−3𝑅2𝑟2
S + 𝑟4

S + 4𝑅4)
4𝑅3 (𝑟2

S − 𝑅2)
𝑭 (3.34)

8𝜋𝜂nℛ𝒖FD(𝒓S, 𝒓S) = −
3 (𝐹 2𝑅2 − (𝑭 ⋅ 𝒓S)2)

2𝑅 (𝑟2
S − 𝑅2)2 𝒓S −

3 (𝑟2
S − 3𝑅2)𝑭 ⋅ 𝒓S

2𝑅 (𝑟2
S − 𝑅2)2 𝑭 (3.35)

8𝜋𝜂nℛ𝒖SD(𝒓S, 𝒓S) = −
3 (−4𝑅2𝑟2

S + 𝑟4
S + 11𝑅4)𝑭 ⋅ 𝒓S

4 (𝑅3 − 𝑅𝑟2
S)3 𝒓S +

(21𝑅4𝑟2
S − 12𝑅2𝑟4

S + 3𝑟6
S − 20𝑅6)

4 (𝑅3 − 𝑅𝑟2
S)3 𝑭 (3.36)

8𝜋𝜂nℛ𝒖SQ(𝒓S, 𝒓S) =
(𝐹 2𝑅4 (3𝑟2

S + 7𝑅2) − (−5𝑅2𝑟2
S + 𝑟4

S + 22𝑅4) (𝑭 ⋅ 𝒓S)2)

2𝑅3 (𝑟2
S − 𝑅2)4 𝒓S

+
(13𝑅4𝑟2

S − 5𝑅2𝑟4
S + 𝑟6

S − 21𝑅6)𝑭 ⋅ 𝒓S

2𝑅3 (𝑟2
S − 𝑅2)4 𝑭 (3.37)

8𝜋𝜂n ∇2ℛ𝒖FM(𝒓, 𝒓S)∣
𝒓=𝒓S

=
3 (−4𝑅2𝑟2

S + 𝑟4
S + 11𝑅4)𝑭 ⋅ 𝒓S

2 (𝑅3 − 𝑅𝑟2
S)3 𝒓S +

(−21𝑅4𝑟2
S + 12𝑅2𝑟4

S − 3𝑟6
S + 20𝑅6)

2 (𝑅3 − 𝑅𝑟2
S)3 𝑭 (3.38)

8𝜋𝜂n ∇2ℛ𝒖FD(𝒓, 𝒓S)∣
𝒓=𝒓S

=
3 (𝐹 2𝑅2 (𝑟2

S + 5𝑅2) + (𝑟2
S − 7𝑅2) (𝑭 ⋅ 𝒓S)2)

𝑅 (𝑟2
S − 𝑅2)4 𝒓S

−
3 (−4𝑅2𝑟2

S + 𝑟4
S + 15𝑅4)𝑭 ⋅ 𝒓S

𝑅(𝑟2
S − 𝑅2)4 𝑭 (3.39)55
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8𝜋𝜂n ∇2ℛ𝒖SD(𝒓, 𝒓S)∣
𝒓=𝒓S

=
3 (7𝑅4𝑟2

S − 5𝑅2𝑟4
S + 𝑟6

S − 35𝑅6)𝑭 ⋅ 𝒓S

2𝑅3 (𝑟2
S − 𝑅2)5 𝒓S

−
3 (5𝑅6𝑟2

S + 11𝑅4𝑟4
S − 5𝑅2𝑟6

S + 𝑟8
S + 20𝑅8)

2𝑅3 (𝑟2
S − 𝑅2)5 𝑭 (3.40)

8𝜋𝜂n ∇2ℛ𝒖SQ(𝒓, 𝒓S)∣
𝒓=𝒓S

=
(𝐹 2𝑅4 (−42𝑅2𝑟2

S − 3𝑟4
S − 35𝑅4) − (9𝑅4𝑟2

S − 6𝑅2𝑟4
S + 𝑟6

S − 84𝑅6) (𝑭 ⋅ 𝒓S)2)

𝑅3 (𝑟2
S − 𝑅2)6 𝒓S

+
(42𝑅6𝑟2

S + 18𝑅4𝑟4
S − 6𝑅2𝑟6

S + 𝑟8
S + 105𝑅8)𝑭 ⋅ 𝒓S

𝑅3 (𝑟2
S − 𝑅2)6 𝑭 (3.41)

8𝜋𝜂n 𝛁 × ℛ𝒖FM(𝒓, 𝒓S)|𝒓=𝒓S
=

3 (𝑟2
S − 2𝑅2)

2𝑅3 (𝑅2 − 𝑟2
S)

𝑭 × 𝒓S (3.42)

8𝜋𝜂n 𝛁 × ℛ𝒖FD(𝒓, 𝒓S)|𝒓=𝒓S
= −

3 (𝑟2
S − 3𝑅2)𝑭 ⋅ 𝒓S

𝑅(𝑅2 − 𝑟2
S)3 𝑭 × 𝒓S (3.43)

8𝜋𝜂n 𝛁 × ℛ𝒖SD(𝒓, 𝒓S)|𝒓=𝒓S
=

3 (5𝑅4𝑟2
S − 4𝑅2𝑟4

S + 𝑟6
S − 10𝑅6)

2𝑅3 (𝑟2
S − 𝑅2)4 𝑭 × 𝒓S (3.44)

8𝜋𝜂n 𝛁 × ℛ𝒖SQ(𝒓, 𝒓S)∣
𝒓=𝒓S

=
(7𝑅4𝑟2

S − 5𝑅2𝑟4
S + 𝑟6

S − 35𝑅6)𝑭 ⋅ 𝒓S

𝑅3 (𝑅2 − 𝑟2
S)5 𝑭 × 𝒓S. (3.45)
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For 𝑅 → ∞, assuming, without loss of generality, a wall at 𝑧 = 0 with ℎ = 𝒓S ⋅ ̂𝒆𝑧 > 0:

8𝜋𝜂nℛwall𝒖FD(𝒓S, 𝒓S) = 𝐹 2 − 4ℎ𝐹𝑧 − 3𝐹 2
𝑧

8ℎ3 (𝐹𝑥 ̂𝒆𝑥 + 𝐹𝑦 ̂𝒆𝑦) +
𝐹 2 (−8ℎ𝐹𝑧 − 4ℎ2 − 3) + (−4ℎ2 − 3)𝐹 2

𝑧
16ℎ4 ̂𝒆𝑧 (3.46)

8𝜋𝜂nℛwall𝒖FM(𝒓S, 𝒓S) = 1
8

( 1
ℎ3 − 4

ℎ
) (𝐹𝑥 ̂𝒆𝑥 + 𝐹𝑦 ̂𝒆𝑦) − 𝐹 2(−ℎ) + 4ℎ2𝐹𝑧 + 3ℎ𝐹 2

𝑧 + 𝐹𝑧
4ℎ3 ̂𝒆𝑧 (3.47)

8𝜋𝜂nℛwall𝒖SD(𝒓S, 𝒓S) = 3𝐹𝑧 + ℎ
8ℎ4 (𝐹𝑥 ̂𝒆𝑥 + 𝐹𝑦 ̂𝒆𝑦) + 3𝐹 2 − 4ℎ𝐹𝑧 − 9𝐹 2

𝑧
16ℎ4 ̂𝒆𝑧 (3.48)

8𝜋𝜂nℛwall𝒖SQ(𝒓S, 𝒓S) = −3𝐹 2 + 𝐹 2
𝑧

32ℎ5 (𝐹𝑥 ̂𝒆𝑥 + 𝐹𝑦 ̂𝒆𝑦) +
(𝐹 2 + 𝐹 2

𝑧 ) (2𝐹𝑧 + ℎ)
16ℎ5 ̂𝒆𝑧 (3.49)

8𝜋𝜂n ∇2ℛwall𝒖FM(𝒓, 𝒓S)∣
𝒓=𝒓S

= −3𝐹𝑧 + ℎ
4ℎ4 (𝐹𝑥 ̂𝒆𝑥 + 𝐹𝑦 ̂𝒆𝑦) + −3𝐹 2 + 4ℎ𝐹𝑧 + 9𝐹 2

𝑧
8ℎ4 ̂𝒆𝑧 (3.50)

8𝜋𝜂n ∇2ℛwall𝒖FD(𝒓, 𝒓S)∣
𝒓=𝒓S

= −
3 (3𝐹 2 + 𝐹 2

𝑧 )
16ℎ5 (𝐹𝑥 ̂𝒆𝑥 + 𝐹𝑦 ̂𝒆𝑦) +

3 (𝐹 2 + 𝐹 2
𝑧 ) (2𝐹𝑧 + ℎ)
8ℎ5 ̂𝒆𝑧 (3.51)

8𝜋𝜂n ∇2ℛwall𝒖SD(𝒓, 𝒓S)∣
𝒓=𝒓S

= 0 (3.52)

8𝜋𝜂n ∇2ℛwall𝒖SQ(𝒓, 𝒓S)∣
𝒓=𝒓S

= 0 (3.53)

8𝜋𝜂n 𝛁 × ℛwall𝒖FM(𝒓, 𝒓S)|𝒓=𝒓S
= 3𝐹𝑧 + 2ℎ

4ℎ3 (−𝐹𝑦 ̂𝒆𝑥 + 𝐹𝑥 ̂𝒆𝑦) (3.54)

8𝜋𝜂n 𝛁 × ℛwall𝒖FD(𝒓, 𝒓S)|𝒓=𝒓S
= 3𝐹 2 + 2ℎ𝐹𝑧 + 3𝐹 2

𝑧
8ℎ4 (−𝐹𝑦 ̂𝒆𝑥 + 𝐹𝑥 ̂𝒆𝑦) (3.55)

8𝜋𝜂n 𝛁 × ℛwall𝒖SD(𝒓, 𝒓S)|𝒓=𝒓S
= 0 (3.56)

8𝜋𝜂n 𝛁 × ℛwall𝒖SQ(𝒓, 𝒓S)∣
𝒓=𝒓S

= 0. (3.57)57
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Here, ̂𝒆𝑖 is the unit vector in 𝑖-direction.
An Euler integrator,

𝒓(𝑡) = 𝒓(𝑡 − 𝛥𝑡) + 𝒗(𝑡)𝛥𝑡, (3.58)

then updates the position of the squirmer and the entire process is iterated
to obtain the trajectory. The integrator’s time step 𝛥𝑡 is not relevant as
low-Reynolds flow is time-independent; instead, the squirmer’s 𝑣0 determines
the integrator’s step size. In the calculations in chapter 6, we adaptively set

𝛥𝑡 = 0.01 1
𝑣0

max(ℎ,𝑅S). (3.59)

This allows for fast integration of the trajectory far away from the obstacle,
where the squirmer moves in a (nearly) straight line, and a high resolution
when the gap between the squirmer and the obstacle is small and the
hydrodynamic interactions are strong. It is conceptually similar to adaptive
step size control in numerical integration, reviewed e.g. in reference 260,
though we use a static step size criterion instead of determining the ideal
step size from an error estimator.

We include a hard-core repulsive potential that prevents the overlap of
squirmer and obstacle by ensuring that ℎ ≥ 𝑟cut. This modifies the integrator
of equation 3.58 to become

𝒓(𝑡) = max(𝑟cut + 𝑅 + 𝑅S, 𝑟′(𝑡)) ̂𝒓′(𝑡) (3.60)

with

𝒓′(𝑡) = 𝒓(𝑡 − 𝛥𝑡) + 𝒗(𝑡)𝛥𝑡. (3.61)

3.6 Electrostatic Green’s function and multipoles
The Poisson equation 2.26,

∇2𝛷(𝒓, 𝑡) = − 1
𝜀0𝜀r

𝜌total(𝒓, 𝑡),

has the well-known potential

𝛷M(𝒓, 𝑡) = 1
4𝜋𝜀0𝜀r

𝑞0
|𝒓 − 𝒓0(𝑡)|

(3.62)

for a point charge 𝑞0 located at 𝒓0. This is the Green’s function of electro-
statics, resembling what the Oseen tensor equation 3.2 is for a point force in

58



3.6 Electrostatic Green’s function and multipoles

hydrodynamics, but with the difference that the former is for a scalar field
and the latter for a vector field. The potential due to an arbitrary charge
distribution 𝜌total is thus given by

𝛷(𝒓, 𝑡) = 1
4𝜋𝜀0𝜀r

∫
ℝ𝑑

𝜌total(𝒓′, 𝑡)
|𝒓 − 𝒓′|

d𝑑𝑟′. (3.63)

A charge dipole 𝒑0 = 𝑞0𝒂 corresponds to two point charges ±𝑞0 located
at 𝒓0 ± 𝒂/2 in the limit of 𝑎 → 0. The corresponding fundamental solution
is

𝛷D(𝒓, 𝑡) = 1
4𝜋𝜀0𝜀r

𝒑0 ⋅ (𝒓 − 𝒓0(𝑡))
|𝒓 − 𝒓0(𝑡)|

3 . (3.64)

Just like in the hydrodynamic case of equation 3.3, this expression can be
obtained by differentiation of the Green’s function:

𝛷D(𝒓) = 1
𝑞0

𝒑0 ⋅ ∇0𝛷M(𝒓, 𝑡) = − 1
𝑞0

𝒑0 ⋅ ∇𝛷M(𝒓, 𝑡). (3.65)

Here, the subscript 0 on the differential operator refers to differentiation with
respect to 𝒓0. Thanks to the linearity of Poisson’s equation, the combined
potential of a charge density 𝜌total and dipole density 𝒑total is obtained by
superposition as

𝛷(𝒓, 𝑡) = 1
4𝜋𝜀0𝜀r

∫
ℝ𝑑

(𝜌total(𝒓′, 𝑡) − 𝒑total(𝒓′, 𝑡) ⋅ 𝛁) 1
|𝒓 − 𝒓′|

d𝑑𝑟′ (3.66)

with the dipole density

𝒑total(𝒓, 𝑡) = ∫
ℝ𝑑

𝒓′𝜌total(𝒓′, 𝑡)d𝑑𝑟′. (3.67)

The force and torque exerted on a charge monopole 𝑞 and charge dipole
𝒑 at 𝒓 by a potential 𝛷 are given by

𝑭M(𝑡) = −𝑞∇𝛷(𝒓, 𝑡), (3.68)
𝑴M(𝑡) = 0, (3.69)
𝑭D(𝑡) = −∇ (𝒑0 ⋅ ∇𝛷(𝒓, 𝑡)) , (3.70)

𝑴D(𝑡) = −𝒑0 × ∇𝛷(𝒓, 𝑡). (3.71)

The trajectories of point particles with monopoles and dipoles in an electric
potential can be obtained from these expressions by (numerical) integration.
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4 Computational methods
The equations introduced in chapter 2, particularly their coupled occurrence,
are difficult to solve analytically. We therefore resort to approximations
and numerical methods to understand the dynamics of these fluids and of
(self-propelled) particles immersed therein. In chapter 3, we already made an
attempt at an analytic method that delivers a far-field approximation to the
Stokes equations 2.10 and 2.15 for certain simple geometries. In section 4.1,
we show the lattice Boltzmann (LB) method that also includes near-field and
can be coupled to the Poisson-Nernst-Planck equations 2.23, 2.24 and 2.26
and Oldroyd-B equation 2.17. These equations can be solved using the
finite volume (FV) method of section 4.2. Section 4.3 introduces a simple
electrostatics solver. Section 4.4 explains how moving boundary conditions
can be incorporated into LB and FVs. Finally, section 4.5 references the
software frameworks that were used to implement these methods and run
the simulations.

4.1 Lattice Boltzmann
LB was originally derived from lattice gas automata in the 1980s [261–263].
The modern derivation directly from kinetic gas theory was introduced a
decade later [264]. For the full details, please refer to the textbook by
Krüger et al. [265] as this section will only give the resulting algorithm.
Compared to other methods, its main advantage is that is fully local and
even the necessary derivatives can be calculated from the populations in a
single cell. The straightforward support of complex geometries, multiphase
fluids, and thermal fluctuations make LB an attractive tool for many soft
matter problems [266]. The main drawback of LB is its rather large memory
footprint, which is generally the bottleneck of LB simulations.

LB constructs solutions to the Stokes equations 2.10 and 2.15 from the
Boltzmann transport equation (BTE), which derives from the same conser-
vation laws. The BTE describes the time evolution of 𝑓(𝒓, 𝒗, 𝑡), which is the
probability distribution function of finding a single fluid molecule with veloc-
ity 𝒗 at position 𝒓 and time 𝑡. LB discretizes the BTE on a lattice, typically
a square/cubic lattice in two/three dimensions, with grid spacing 𝛥𝑥 and
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discrete time steps 𝛥𝑡. Relaxation of 𝑓 toward its Maxwellian equilibrium
is linearized and only a finite set of velocities 𝒄𝑖 is permitted. The latter
is usually chosen commensurate with the lattice, i.e. allowing probability
to be exchanged solely between neighboring cells, to eliminate any need for
interpolation [267, 268]. The probability distribution is thus replaced by the
populations 𝑓𝑖(𝒓, 𝑡) = 𝑓(𝒓, 𝒄𝑖, 𝑡), with their equilibrium values 𝑓eq

𝑖 (𝒓, 𝑡).
We use the D3Q19 velocity set in three dimensions and D2Q9 for two-

dimensional systems. In the general D𝑑Q𝑞 notation, 𝑑 refers to the dimen-
sionality and 𝑞 to the number of velocity vectors pointing to neighbor cells
— here these are the six face and twelve edge neighbors (or four edge and
four corner neighbors in two dimensions). The employed two relaxation
time (TRT) collision operator [269] relaxes symmetric (+) and antisym-
metric (−) linear combinations of 𝑓𝑖 separately, and only the symmetric
relaxation time 𝜆+ affects the viscosity of the fluid. 𝜆− can be tuned to
improve the accuracy of boundary conditions [270].

The full LB method is given by

𝑓𝑖(𝒓 + 𝒄𝑖𝛥𝑡, 𝑡 + 𝛥𝑡) = 𝑓𝑖(𝒓, 𝑡) − 𝜆+ (𝑓+
𝑖 (𝒓, 𝑡) − 𝑓eq+

𝑖 (𝒓, 𝑡))
− 𝜆− (𝑓−

𝑖 (𝒓, 𝑡) − 𝑓eq−
𝑖 (𝒓, 𝑡)) + 𝛥𝑖(𝒓, 𝑡) (4.1)

with

𝑓±
𝑖 (𝒓, 𝑡) = 1

2
(𝑓𝑖(𝒓, 𝑡) ± 𝑓−𝑖(𝒓, 𝑡)) , (4.2)

𝑓eq±
𝑖 (𝒓, 𝑡) = 1

2
(𝑓eq

𝑖 (𝒓, 𝑡) ± 𝑓eq
−𝑖(𝒓, 𝑡)) , (4.3)

𝑓eq
𝑖 (𝒓, 𝑡) = 𝑤𝑖𝜌(𝒓, 𝑡) (1 + 3𝒄𝑖 ⋅ 𝒖(𝒓, 𝑡) + 1

6
(𝒄𝑖 ⋅ 𝒖(𝒓, 𝑡))2 − 1

6
𝑢(𝒓, 𝑡)2) ,

(4.4)

𝜂n = 𝜌(𝒓, 𝑡) ( 1
3𝜆+

− 1
6
) , (4.5)

𝜆− = 3
16𝜆+

, (4.6)

where 𝑤𝑖 is the lattice weight factor for 𝒄𝑖 and −𝑖 is defined via 𝒄−𝑖 = −𝒄𝑖.
The 𝑤𝑖 are all positive, obey ∑𝑞

𝑖=1 𝑤𝑖 = 1, and are determined from an
isotropy condition [271]. For D2Q9 and D3Q19, this yields 𝑤𝑖 = 1

9𝑑−9 for
𝑐𝑖 = 1 and 𝑤𝑖 = 1

36 for 𝑐𝑖 =
√

2 [265]. Note that, by convention, 𝒄𝑖 has units
of 𝛥𝑥/𝛥𝑡.

The local fluid density 𝜌(𝒓, 𝑡) appears explicitly because LB does not
simulate a perfectly incompressible fluid. For consistency, one should always
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4.1 Lattice Boltzmann

verify in simulations that the fluid does not compress appreciably. LB does
not simulate a perfectly Stokesian fluid either and deals with the full Navier-
Stokes equation 2.6 instead; for microswimmer purposes this is actually an
advantage because the choice between the steady Stokes equation 2.15 and
the unsteady Stokes equation 2.14 does not need to be made explicitly. The
populations 𝑓𝑖 of the LB equation 4.1 and the macroscopic flow fields of the
Stokes equations 2.10 and 2.15 are connected via

𝜌(𝒓, 𝑡) =
𝑞

∑
𝑖=1

𝑓𝑖(𝒓, 𝑡), (4.7)

𝒖(𝒓, 𝑡) = 1
𝜌(𝒓, 𝑡)

𝑞

∑
𝑖=1

𝑓𝑖(𝒓, 𝑡)𝒄𝑖 + 1
2
𝑭 ext(𝒓, 𝑡) 𝛥𝑡

𝜌(𝒓, 𝑡)𝛥𝑥3 , (4.8)

𝑝(𝒓, 𝑡) = 𝛥𝑥2

3𝛥𝑡2
𝜌(𝒓, 𝑡)𝜌(𝒓, 𝑡). (4.9)

Equation 4.1 is typically calculated in a two-step process as illustrated in
figure 4.1: first, the right-hand side, the local collision operation, is applied,
and then the streaming operation moves the resulting populations to the
respective neighbor cells. This splitting is only an approximation; the exact
variant would require application of a half collision, a streaming, and another
half collision [272, 273]. The half steps can be fused together to eliminate the
approximation, but this introduces the approximate half-time-step correction
in equation 4.8 and complicates the physical interpretation of the first and
last time step of a simulation.

𝛥𝑖(𝒓, 𝑡) in equation 4.1 represents the force 𝑭 ext applied to the fluid. One
possible expression for it is given by Guo et al. [273–276]:

𝛥𝑖(𝒓, 𝑡) = 3𝑤𝑖𝛥𝑡3

𝛥𝑥5 ((1 −
𝜆+
2

)(3𝛥𝑡2

𝛥𝑥2 (𝑭 ⋅ 𝒄𝑖) (𝒖 ⋅ 𝒄𝑖) − 𝑭 ⋅ 𝒖)

+ (1 − 𝜆−
2

)𝑭 ⋅ 𝒄𝑖) . (4.10)

Guo et al.’s model is constructed by requiring that its contribution to both
stress and momentum is physically correct [277], while simpler force models
only yield correct momentum.

Velocity boundary conditions can be imposed on the fluid by using [278]

𝑓𝑖(𝒓b + 𝒄𝑖𝛥𝑡, 𝑡 + 𝛥𝑡) ≡ 𝑓−𝑖(𝒓b, 𝑡) + 6𝜌𝑤𝑖𝛥𝑡2

𝛥𝑥2 𝒄𝑖 ⋅ 𝒖b, (4.11)

where 𝒓b is a boundary node with velocity 𝒖b and 𝒓b + 𝒄𝑖𝛥𝑡 is a fluid node.
For no-slip conditions 𝒖b = 0, this scheme corresponds to a bounce-back of
the population as illustrated in figure 4.2.
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• • •⟶
collide

⟶
stream

Figure 4.1: Illustration of the collision and streaming steps of LB. The
former is a local operation that relaxes populations toward equilibrium, the
latter moves the populations to the respective neighbor cells. Each arrow
corresponds to one population belonging to its cell.

• • •⟶
reflect

⟶
stream

Figure 4.2: Illustration of the velocity bounce-back boundary condition
for LB. To impose a no-slip boundary, populations pointing toward it are
reflected before the streaming step is performed.

64



4.2 Finite volume method

We do not consider thermal fluctuations of the solvent in this work. A
consistent thermalization for the pure LB algorithm is available [279], and
such fluctuations may be significant for nanoscale systems.

4.2 Finite volume method
The FV method [280] is generally suited for solving problems governed
by conservation laws since it guarantees the conservation of, e.g., mass,
momentum and energy to machine precision. This covers the Stokes equa-
tions 2.10 and 2.15, viscoelastic constitutive equations like equation 2.17,
or the Nernst-Planck equations 2.23 and 2.24. For the Stokes equation, we
prefer the LB method of the previous section for its more extensive particle
coupling options, which will be discussed in section 4.4, but for use with the
other equations, FVs are introduced in the following. We start out with

∂𝑌0
∂𝑡

(𝒓, 𝑡) = −𝛁 ⋅ 𝑱(𝒓, 𝑡) + 𝑆(𝒓, 𝑡) (4.12)

as the most general continuity equation for a quantity 𝑌0 with an associated
flux 𝑱 and a source term 𝑆. Both may be functions of 𝑌0 and other fields
{𝑌𝑖}𝑖>0, as well as their spatial derivatives { ∂𝑘

∂𝑟𝑗1⋯∂𝑟𝑗𝑘
𝑌𝑖}

𝑖≥0,𝑘≥1
.

4.2.1 Discretization
Equation 4.12 is averaged over one cell’s volume 𝑉 = 𝛥𝑥𝑑 with surface unit
normal �̂� to become

1
𝑉

∫
𝑉

∂
∂𝑡

𝑌0(𝒓, 𝑡) = 1
𝑉

∫
𝑉
(−𝛁 ⋅ 𝑱(𝒓, 𝑡) + 𝑆(𝒓, 𝑡)) (4.13)

= ∂
∂𝑡

̄𝑌0(𝒓, 𝑡) = −1
𝑉

∫
𝑉

𝑑
∑
𝑘=1

∂
∂𝑟𝑘

𝐽𝑘(𝒓, 𝑡)d𝑑𝑟 + ̄𝑆(𝒓, 𝑡)

= −1
𝑉

∫
∂𝑉

𝑑
∑
𝑘=1

𝐽𝑘(𝒓, 𝑡)𝑛𝑘d𝑑−1𝑟 + ̄𝑆(𝒓, 𝑡), (4.14)

where Gauß’s divergence theorem has been applied and the overbar indicates
the volume average. By locating ̄𝑌0 and ̄𝑆 at the cell center and 𝑱 between
two cells as illustrated in figure 4.3, the discrete form of this equation is
obtained as

̄𝑌0(𝒓, 𝑡 + 𝛥𝑡) ≈ −1
𝑉

𝑞

∑
ℓ=1

𝑑
∑
𝑘=1

𝐽𝑘(𝒓 + 1
2
𝒄ℓ𝛥𝑡, 𝑡)𝑐ℓ𝑘 + ̄𝑆(𝒓, 𝑡) + ̄𝑌0(𝒓, 𝑡), (4.15)
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• ̄𝑌0
𝐽1

𝐽2

𝐽3

𝐽4

𝐽5𝐽6

𝐽7 𝐽8

Figure 4.3: Illustration of the location of the variables in an FV scheme: a
quantity ̄𝑌0 is located at the cell centers, while its fluxes 𝐽𝑘 exchange that
quantity between neighboring cells.
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where we have used the same grid spacing and time step as in section 4.1.
The neighbor set {𝒄𝑖} does not necessarily need to match the one used in
section 4.1: for Oldroyd-B in section 4.2.3, we have found D3Q27/D2Q9
to deliver no appreciable advantage over D3Q7/D2Q5 [281] and have thus
selected the latter for its lower computational cost, while for the electrokinetic
equations in section 4.2.4, reference 282 recommends D3Q19.

Since 𝑱, defined between cells, may depend on {𝑌𝑖} and its derivatives,
defined at cell centers, (a) numerical interpolation and (b) numerical differ-
entiation is needed. For 𝑆, which is co-located with {𝑌𝑖}, only (c) numerical
differentiation is needed. We restrict ourselves to the lowest-order variants
of these numerical methods so that only quantities from immediate neighbor
cells are needed. These are sufficient for most applications, but do not
go beyond second derivatives. Section 4.2.2 references some higher-order
versions that may provide better numerical stability or accuracy in certain
situations.

For (a), we perform linear interpolation as

𝑌𝑖(𝒓 + 1
2
𝒄𝑘𝛥𝑡, 𝑡) ≈ 1

2
( ̄𝑌𝑖(𝒓, 𝑡) + ̄𝑌𝑖(𝒓 + 𝒄𝑘𝛥𝑡, 𝑡)) . (4.16)

For (b), we numerically differentiate:

∂
∂𝑟𝑘

𝑌𝑖(𝒓 + 1
2
𝒄𝑘𝛥𝑡, 𝑡) ≈ 1

|𝑐𝑘|
( ̄𝑌𝑖(𝒓 + 𝒄𝑘𝛥𝑡, 𝑡) − ̄𝑌𝑖(𝒓, 𝑡)) . (4.17)

For (c), we numerically differentiate and average over the volume 𝑉 of the
cell whose midpoint is at 𝒓:

1
𝑉

∫
𝑉

∂
∂𝑟′

𝑖
𝑌ℓ(𝒓′, 𝑡)d𝑑𝑟′ = 1

𝑉

𝛥𝑥/2

∫
−𝛥𝑥/2

⋯

𝛥𝑥/2

∫
−𝛥𝑥/2

(𝑌ℓ(𝒓 + 𝛥𝑥
2

̂𝒆𝑖, 𝑡)

− 𝑌ℓ(𝒓 − 𝛥𝑥
2

̂𝒆𝑖, 𝑡))
d𝑟1 ⋯ d𝑟𝑑

d𝑟𝑖
, (4.18)

1
𝑉

∫
𝑉

∂2

∂𝑟′
𝑖
2 𝑌ℓ(𝒓′, 𝑡)d𝑑𝑟′ = 1

𝑉

𝛥𝑥/2

∫
−𝛥𝑥/2

⋯

𝛥𝑥/2

∫
−𝛥𝑥/2

(1
4
𝑌ℓ(𝒓 + 𝛥𝑥

2
̂𝒆𝑖, 𝑡) − 1

2
𝑌ℓ(𝒓, 𝑡)

+ 1
4
𝑌ℓ(𝒓 − 𝛥𝑥

2
̂𝒆𝑖, 𝑡))

d𝑟1 ⋯ d𝑟𝑑
d𝑟𝑖

. (4.19)
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Making the central-point approximation

𝛥𝑥/2

∫
−𝛥𝑥/2

⋯

𝛥𝑥/2

∫
−𝛥𝑥/2

𝑌𝑘(𝒓 ± 𝛥𝑥
2

̂𝒆𝑖, 𝑡)
d𝑟1 ⋯ d𝑟𝑑

d𝑟𝑖
≈ 𝛥𝑥𝑑−1𝑌𝑘(𝒓 ± 𝛥𝑥

2
̂𝒆𝑖, 𝑡) (4.20)

and inserting equation 4.16 yields the first-order FV discretization

∂
∂𝑟𝑖

𝑌𝑖(𝒓, 𝑡) ≈ 1
2𝛥𝑥

( ̄𝑌𝑖(𝒓 + 𝛥𝑥 ̂𝒆𝑖, 𝑡) − ̄𝑌𝑖(𝒓 − 𝛥𝑥 ̂𝒆𝑖, 𝑡)) , (4.21)

which is identical to the corresponding finite difference (FD) scheme. Equa-
tion 4.20 may be replaced with an average over the velocity at the corners
of the cell:

𝛥𝑥/2

∫
−𝛥𝑥/2

⋯

𝛥𝑥/2

∫
−𝛥𝑥/2

𝑌𝑘(𝒓 ± 𝛥𝑥
2

̂𝒆𝑖, 𝑡)
d𝑟1 ⋯ d𝑟𝑑

d𝑟𝑖

≈
𝑑

∑
ℓ=1

(1 − 𝛿𝑖ℓ)𝛥𝑥𝑑−1 (𝑌𝑘(𝒓 ± 𝛥𝑥
2

( ̂𝒆𝑖 + ̂𝒆ℓ), 𝑡) + 𝑌𝑘(𝒓 ± 𝛥𝑥
2

( ̂𝒆𝑖 + ̂𝒆ℓ), 𝑡)) .

(4.22)

This, however, does not produce a second-order FV scheme as the error
order remains the same [283] and was thus not used.

4.2.2 Stability improvements
FV and FD schemes are known to exhibit numerical instabilities in certain
situations, which result in spatial oscillations or ‘wiggles’ [281]. This is a
particularly prominent problem in the context of Oldroyd-B as the model’s
Péclet number [280], which relates advective transport to diffusive transport
in the same way as equation 2.55 does for electrokinetic phenomena, is
infinite due to the absence of a diffusive term in equation 2.17. We observed
stress wiggles when performing the simulations of sections 7.2.4 and 7.2.5
with the scheme described in section 4.2.1. Another potential cause of
the wiggles might be that the numerical scheme does not ensure positive
semi-definiteness of 𝞽, which is physically required but only guaranteed by
some specialized numerical schemes [284].

Solutions proposed for Oldroyd-B include: using higher-order differenti-
ation schemes [285], inserting an artificial diffusion term [286], or storing
𝒖 and 𝞽 on two separate grids shifted relative to each other by half a cell
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[287, 288]. These methods increase computational cost, modify the physics
of the system, and make the implementation cumbersome, respectively, so
we considered alternative techniques suggested in general FV literature.
These include higher-order interpolation [280, 289] and differentiation [290]
schemes, as well as upwind schemes [280, 282].

We resorted to the latter and chose an upwind variant called “corner-
transport upwind scheme” suggested by references 282 and 291. Upwind
schemes calculate advective fluxes like equation 4.24 or the last term of
equation 4.33 not by interpolating quantities to the midpoint between two
cells, but by using the quantity from either cell, depending on which way
the flow points [280]. Reference 282’s method is geometrically motivated by
virtually displacing the cell at 𝒓 in accordance with its velocity by 𝒖(𝒓, 𝑡)𝛥𝑡
and calculating the virtual cell’s overlap volume with all neighboring cells as
illustrated in figure 4.4. This overlap corresponds to the fraction of 𝑌0(𝒓, 𝑡)
to be transferred to the respective neighboring cell:

𝐽𝑖(𝒓 + 1
2
𝒄𝑖𝛥𝑡) =

𝑌0(𝒓, 𝑡) 𝛥𝑡
𝛥𝑥𝑑−1

𝑑
∏
𝑘=1

𝑐𝑖𝑘𝛥𝑡+𝛥𝑥

∫
𝑐𝑖𝑘𝛥𝑡

𝜃(𝑎 − 𝑢𝑘(𝒓, 𝑡)𝛥𝑡)𝜃(𝑢𝑘(𝒓, 𝑡)𝛥𝑡 + 𝛥𝑥 − 𝑎)d𝑎

(4.23)

with the Heaviside step function 𝜃. While this in principle results in fluxes
in all D3Q27/D2Q9 directions, fluxes beyond the D3Q7/D2Q5 neighbor set
are 𝒪(𝑢2), making them negligible here.

4.2.3 Finite volume Oldroyd-B
Our method is inspired by the LB-coupled FV solver for the electrokinetic
equations discussed in section 4.2.4 [282] and has similarities to other FV
Oldroyd-B solvers [287]. We found that the hybrid scheme of FDs and LB
originally suggested by Su et al. [285] led to violation of energy conservation
in the constitutive equation in the presence of boundaries, which translated
into a violation of the conservation of momentum [292]. Moving boundary
simulations as presented in section 7.2.5 were therefore impossible. This
may seem surprising as FDs’ and FVs’ first-order schemes are identical, but
the latter is only true in the absence of boundaries.

For equation 2.19, section 4.2.1 suggests

𝙅𝑖(𝒓 + 1
2
𝒄𝑖𝛥𝑡, 𝑡) = 1

|𝑐𝑖| 𝐴0
𝞽(𝒓 + 1

2
𝒄𝑖𝛥𝑡, 𝑡) (𝒖(𝒓 + 1

2
𝒄𝑖𝛥𝑡, 𝑡) ⋅ 𝒄𝑖) , (4.24)
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𝛥𝑥 − 𝑣𝑦𝛥𝑡

𝑣𝑦𝛥𝑡

𝑣𝑥𝛥𝑡𝛥𝑥 − 𝑣𝑥𝛥𝑡

•

•

𝒗𝛥𝑡

Figure 4.4: Illustration of the corner-transport upwind scheme, inspired
by reference 282: a quantity ̄𝑌0 is located in a cell and its advective fluxes
𝐽𝑘 to the 𝑘-th neighboring cell are determined by calculating each neighbor
cell’s overlap with a cell virtually displaced by 𝒗𝛥𝑡.
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where the projection onto 𝒄𝑖 and the prefactor

𝐴0 = 1
2𝑑

𝑞

∑
ℓ=1

|𝑐ℓ| . (4.25)

account for the case of 𝑞 > 2𝑑 + 1 [282]. However, we replace equation 4.24
with the corner-transport upwind scheme of equation 4.23 to improve nu-
merical stability:

𝙅𝑖(𝒓 + 1
2
𝒄𝑖𝛥𝑡) =

𝞽(𝒓, 𝑡) 𝛥𝑡
𝛥𝑥𝑑−1

𝑑
∏
𝑘=1

𝑐𝑖𝑘𝛥𝑡+𝛥𝑥

∫
𝑐𝑖𝑘𝛥𝑡

𝜃(𝑎 − 𝑢𝑘(𝒓, 𝑡)𝛥𝑡)𝜃(𝑢𝑘(𝒓, 𝑡)𝛥𝑡 + 𝛥𝑥 − 𝑎)d𝑎.

(4.26)

For equation 2.20, section 4.2.1 yields

̄𝑆𝑖𝑗(𝒓, 𝑡) = 1
2𝛥𝑥

𝑑
∑
𝑘=1

𝜏𝑖𝑘(𝒓, 𝑡) (𝑢𝑗(𝒓 + 𝛥𝑥 ̂𝒆𝑘, 𝑡) − 𝑢𝑗(𝒓 − 𝛥𝑥 ̂𝒆𝑘, 𝑡))

+ 1
2𝛥𝑥

𝑑
∑
𝑘=1

𝜏𝑘𝑗(𝒓, 𝑡) (𝑢𝑖(𝒓 + 𝛥𝑥 ̂𝒆𝑘, 𝑡) − 𝑢𝑖(𝒓 − 𝛥𝑥 ̂𝒆𝑘, 𝑡))

+
𝜂p

2𝛥𝑥𝜆p
(𝑢𝑗(𝒓 + 𝛥𝑥 ̂𝒆𝑖, 𝑡) − 𝑢𝑗(𝒓 − 𝛥𝑥 ̂𝒆𝑖, 𝑡))

+
𝜂p

2𝛥𝑥𝜆p
(𝑢𝑖(𝒓 + 𝛥𝑥 ̂𝒆𝑗, 𝑡) − 𝑢𝑖(𝒓 − 𝛥𝑥 ̂𝒆𝑗, 𝑡)) − 1

𝜆p
𝜏𝑖𝑗(𝒓, 𝑡).

(4.27)

The discrete form of the continuity equation 2.18 comes from equation 4.15
for each component of the stress tensor:

̄𝜏𝑖𝑗(𝒓, 𝑡 + 𝛥𝑡) ≈ − 1
𝛥𝑥3

𝑞

∑
ℓ=1

𝑑
∑
𝑘=1

𝐽𝑖𝑗𝑘(𝒓 + 1
2
𝒄ℓ𝛥𝑡, 𝑡)𝑐ℓ𝑘

+ ̄𝑆𝑖𝑗(𝒓, 𝑡)𝛥𝑡 + ̄𝜏𝑖𝑗(𝒓, 𝑡). (4.28)

The force equation 2.16 is discretized in the fashion of section 4.2.1 by
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averaging over the volume of a cell:

̄𝐹 p
𝑗 (𝒓, 𝑡) = 1

𝑉
∫
𝑉

𝑑
∑
𝑖=1

∂
∂𝑟𝑖

𝜏𝑖𝑗(𝒓, 𝑡)d𝑑𝑟

= 1
𝑉

∫
∂𝑉

𝑑
∑
𝑖=1

𝜏𝑖𝑗(𝒓, 𝑡)𝑛𝑖d𝑑−1𝑟 (4.29)

≈ 1
𝐴0

𝑞

∑
ℓ=1

1
|𝑐ℓ|

𝑑
∑
𝑖=1

𝜏𝑖𝑗(𝒓 + 1
2
𝒄ℓ𝛥𝑡, 𝑡)𝑐ℓ𝑖, (4.30)

where 𝜏𝑖𝑗(𝒓 + 1
2𝒄𝑖𝛥𝑡) can be obtained via equation 4.16.

Boundaries across which no stress is transported can be imposed on the
FV scheme by using

𝙅(𝒓b + 1
2
𝒄𝑖𝛥𝑡) ≡ 0, (4.31)

where 𝒓b is a boundary node and 𝒓b+𝒄𝑖𝛥𝑡 is a fluid node. 𝞽(𝒓b) needs to be
extrapolated so that the force can continue to be obtained via equation 4.30.
We found constant extrapolation

𝞽(𝒓b) ≡ 𝞽(𝒓b + 𝒄𝑖𝛥𝑡) (4.32)

to be sufficient, but linear or quadratic extrapolation could be employed as
needed.

As in our LB, thermal fluctuations are not included. The addition of noise
to the stress fluxes — while obtaining the proper fluctuation-dissipation
relation for the total fluid — is non-trivial and goes beyond the scope of
this thesis. Thermalization of the FV Oldroyd-B solver based on existing
numerical methods for fluctuating hydrodynamics [293] could be the subject
of future study.

4.2.4 Lattice electrokinetics

The method proposed by Capuani et al. [282], which we call “lattice elec-
trokinetics” (EK), discretizes equation 2.24 with the same stencil on the
same lattice that LB is performed on. Rempfer et al. [209] have shown
that the discretization originally proposed in reference 282 introduces errors
scaling exponentially with 𝐸/𝛥𝑥 where 𝐸 is the applied electric field. We
instead use a conventional FV discretization as introduced in section 4.2.1.
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This results in

𝑗diff
𝑘𝑖 (𝒓 + 1

2
𝒄𝑖𝛥𝑡, 𝑡)

= 𝐷𝑘
𝐴0𝑐𝑖𝛥𝑡

(𝜌𝑘(𝒓, 𝑡) − 𝜌𝑘(𝒓 + 𝒄𝑖𝛥𝑡, 𝑡))

− 𝐷𝑘𝑧𝑘𝑒
𝑘B𝑇𝐴0𝑐𝑖𝛥𝑡

𝜌𝑘(𝒓, 𝑡) + 𝜌𝑘(𝒓 + 𝒄𝑖𝛥𝑡, 𝑡)
2

(𝛷(𝒓, 𝑡) − 𝛷(𝒓 + 𝒄𝑖𝛥𝑡, 𝑡))

(4.33)

for the diffusive term, as in reference 209 and with 𝐴0 from equation 4.25.
For the advective term 𝑗adv

𝑘𝑖 , the upstream method of equation 4.23 is used
[282] to obtain

𝑗adv
𝑘𝑖 (𝒓 + 1

2
𝒄𝑖𝛥𝑡) =

𝜌𝑘(𝒓, 𝑡) 𝛥𝑡
𝛥𝑥𝑑−1

𝑑
∏
ℓ=1

𝑐𝑖ℓ𝛥𝑡+𝛥𝑥

∫
𝑐𝑖ℓ𝛥𝑡

𝜃(𝑎 − 𝑢ℓ(𝒓, 𝑡)𝛥𝑡)𝜃(𝑢ℓ(𝒓, 𝑡)𝛥𝑡 + 𝛥𝑥 − 𝑎)d𝑎.

(4.34)

The index 𝑘 runs over the 𝑁 different solute species.
Once the fluxes have been calculated, they can be propagated using the

discretization of the continuity equation 2.23 via equation 4.15,

𝜌𝑘(𝒓, 𝑡 + 𝛥𝑡) = 𝜌𝑘(𝒓, 𝑡) − 𝛥𝑡
𝛥𝑥𝑑

𝑞

∑
𝑖=1

(𝑗diff
𝑘𝑖 (𝒓, 𝑡) + 𝑗adv

𝑘𝑖 (𝒓, 𝑡)) . (4.35)

The fluid coupling force is a direct discretization of equation 2.28 and is
applied using equation 4.10:

𝑭ext(𝒓, 𝑡) = 𝑘B𝑇𝛥𝑥
𝛥𝑡

𝑁
∑
𝑘=1

𝑞

∑
𝑖=1

𝑗diff
𝑘𝑖 (𝒓, 𝑡)

𝐷𝑘
𝒄𝑖. (4.36)

Solving the electrostatics of equation 2.26 is discussed in section 4.3.
Besides driving the migrative term of equation 4.33, electrostatics also
results in a force acting on the colloidal particles, which is added to the
hydrodynamic drag force of equations 4.47 and 4.48 before integrating the
particle trajectory.

At this point, EK is only capable of handling stationary boundary con-
ditions, such as walls and particles that are stationary with respect to the
lattice. They are simply mapped into the LB fluid as a no-slip boundary in
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all cells inside them and any EK solute fluxes into or out of these cells are
set to zero:

𝑗𝑘𝑖(𝒓b + 1
2
𝒄𝑖𝛥𝑡) ≡ 0, (4.37)

where 𝒓b is a boundary node and 𝒓b+𝒄𝑖𝛥𝑡 is a fluid node. Prescribing normal
fluxes other than zero via equation 2.41 would allow for the incorporation
of chemical reactions occurring on the surface that lead to phenomena such
as charge regulation and self-electrophoresis [35, 208]. Boundaries may be
charged by considering their charge distribution 𝜌b(𝒓, 𝑡) as an additional
summand when solving equation 2.26.

As in our LB, thermal fluctuations are not included. The addition of
noise to the concentration fluxes — while obtaining the proper fluctuation-
dissipation relation for the total fluid — is non-trivial and goes beyond the
scope of this thesis. Thermalization of the EK algorithm based on existing
numerical methods for fluctuating hydrodynamics of electrolytes [294, 295]
has recently been considered in reference 6.

4.2.5 Chemical reactions
The chemical reactions of equation 2.35 become an additional source term on
the right-hand side of equation 4.35 simply by integrating over the volume
of a cell [213, 296]:

𝑅𝑘(𝒓, 𝑡) = −𝛾𝑠𝑘𝜌𝑘(𝒓, 𝑡) + 𝛾 ∑
𝑖≠𝑘

𝑠𝑖𝜌𝑖(𝒓, 𝑡). (4.38)

4.3 Fast Fourier electrostatics
The electrostatics of equation 2.26 is treated using any available lattice-based
electrostatics solver. For this work, one based on fast Fourier transforma-
tions (FFTs) is used [297], but iterative solvers for linear equation systems,
such as successive over-relaxation (SOR) or Krylov subspace methods, might
also be applied [282, 298]. The non-FFT-based solvers are also capable of
incorporating inhomogeneous dielectric coefficients 𝜀r; the assumption of ho-
mogeneity has only entered into the specific form of Poisson’s equation 2.26
used here. Even FFT-based solvers can approximate inhomogeneous di-
electric coefficients by using the previous time step’s electric potential to
calculate the induced charges [299], which is valid in our limit where charges
move much slower than 𝛥𝑥/𝛥𝑡. Note that an Ewald-type splitting [300]
is not needed as charges cannot be more narrowly localized than a single
lattice cell; the short-range term of the Ewald summation would thus be
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zero and the long-range term would be equivalent to what is introduced
below. We may however have charge separation within a cell, so a dipolar
electrostatics solver is also discussed below.

4.3.1 Charge monopoles
We start out by discretizing the Poisson equation 2.26,

∇2𝛷(𝒓, 𝑡) = − 1
𝜀0𝜀r

𝜌total(𝒓, 𝑡),

with a 2𝑑-point finite difference scheme to obtain

1
𝛥𝑥2 (−(2𝑑 + 1)𝛷(𝒓, 𝑡) +

2𝑑+1

∑
𝑘=1

𝛷(𝒓 + 𝒄𝑖𝛥𝑡, 𝑡)) = − 1
𝜀0𝜀r

𝜌total(𝒓, 𝑡), (4.39)

where the sum runs over the D3Q7/D2Q5 neighbor set. Any function 𝑌 (𝒓)
on a regular grid with periodic boundary conditions can be expressed in
terms of a discrete Fourier transformation:

̂𝑌 (𝒌) = 1

√∏𝑑
𝑗=1 𝑁𝑗

𝑁1−1

∑
𝑟1=0

⋯
𝑁𝑑−1

∑
𝑟𝑑=0

exp(−2𝜋𝑖
𝑑

∑
𝑗=1

𝑘𝑗𝑟𝑗

𝑁𝑗
)𝑌 (𝒓) (4.40)

𝑌 (𝒓) = 1

√∏𝑑
𝑗=1 𝑁𝑗

𝑁1−1

∑
𝑘1=0

⋯
𝑁𝑑−1

∑
𝑘𝑑=0

exp(2𝜋𝑖
𝑑

∑
𝑗=1

𝑘𝑗𝑟𝑗

𝑁𝑗
) ̂𝑌 (𝒌) (4.41)

with the grid size 𝑁1 × ⋯ × 𝑁𝑑 matching the grid used for LB and EK.
Inserting equation 4.41 into equation 4.39, one obtains

−𝛥𝑥2

𝜀0𝜀r

𝑁1−1

∑
𝑘1=0

⋯
𝑁𝑑−1

∑
𝑘𝑑=0

exp(2𝜋𝑖
𝑑

∑
𝑗=1

𝑘𝑗𝑟𝑗

𝑁𝑗
) ̂𝜌total(𝒌, 𝑡)

= 2
𝑁1−1

∑
𝑘1=0

⋯
𝑁𝑑−1

∑
𝑘𝑑=0

exp(2𝜋𝑖
𝑑

∑
𝑗=1

𝑘𝑗𝑟𝑗

𝑁𝑗
)(

𝑑
∑
𝑗=1

2 cos(
𝜋𝑘𝑗

𝑁𝑗
) − 𝑑) ̂𝛷(𝒌, 𝑡).

(4.42)

The fact that the discrete Fourier transformation is an orthonormal basis
means that this equality is fulfilled for each summand individually [297], so

̂𝛷(𝒌, 𝑡) = − 𝛥𝑥2

2𝜀0𝜀r (∑𝑑
𝑗=1 cos ( 2𝜋𝑘𝑗

𝑁𝑗
) − 𝑑)

̂𝜌total(𝒌, 𝑡). (4.43)
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The backward discrete Fourier transformed of equation 4.43’s proportion-
ality factor is the discrete form of the Green’s function of electrostatics in
equation 3.63 [297]. Since it does not depend on time, it can be pre-computed
for all 𝒌 at the beginning of the simulation. Going from equation 4.42 to
equation 4.43, a division has been performed which is undefined for 𝑘 = 0
unless ̂𝜌(0, 𝑡) = 0. This yields the requirement that the system must be
charge-neutral [297],

𝑄total =
𝑁1−1

∑
𝑟1=0

⋯
𝑁𝑑−1

∑
𝑟𝑑=0

𝜌total((𝑟1,… , 𝑟𝑑)⊺, 𝑡) = 0. (4.44)

The convolution of the charge with the Green’s function can efficiently be
performed using FFTs, which are an efficient way of evaluating equations 4.40
and 4.41. 𝜌total is FFTed into ̂𝜌total via equation 4.40, multiplied according to
equation 4.43 to obtain ̂𝛷, and then inverse-FFTed into 𝛷 via equation 4.41.

4.3.2 Charge dipoles
The same method may also be used to compute the potential due to a charge
dipole density 𝒑total by applying concepts from section 3.6. We know from
equation 3.65 that the transition from monopole to dipole corresponds to
the application of the operator −𝒑total ⋅ 𝛁. In Fourier space, this becomes a
multiplication with −𝑖𝒌 ⋅ 𝒑total. The dipolar equivalent to equation 4.43 is
thus [301]

̂𝛷D(𝒌, 𝑡) = 𝑖 𝛥𝑥2

2𝜀0𝜀r (∑𝑑
𝑗=1 cos ( 2𝜋𝑘𝑗

𝑁𝑗
) − 𝑑)

𝒌 ⋅ �̂�total(𝒌, 𝑡), (4.45)

and the potential due to a combined distribution of charge monopoles and
dipoles can be obtained by adding equations 4.43 and 4.45, exactly as
was done in equation 3.65. The backward discrete Fourier transformed of
equation 4.45’s proportionality factor is the discrete form of the fundamental
solution for dipoles in equation 3.65.

4.4 Moving boundaries
There is a variety of methods that incorporate particles into an LB fluid
[266], ranging from point-particle descriptions [302, 303] to particles that
are resolved on the grid [304, 305]. In this work, we are interested in the
latter, since for the study of phoretic interactions of self-propelled particles,
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one typically needs to resolve the particle surface where the propulsion
is taking place as discussed in section 1.2.2. Thus the moving boundary
method introduced by Ladd [304] and later improved upon by Aidun et al.
[305] is the obvious choice to achieve coupling. The method is applicable
for particles much larger than the size of a grid cell and considers the cells
inside the particle as no-slip conditions in the particle-co-moving frame.

4.4.1 Moving-boundary lattice Boltzmann
A colloidal particle with its geometric center at 𝒓 moving with velocity 𝒗
and angular velocity 𝝎 corresponds to a velocity boundary condition of

𝒖b(𝒓b, 𝑡) = 𝒗(𝑡) + 𝝎(𝑡) × (𝒓b − 𝒓(𝑡)), (4.46)

which can be applied via equation 4.11. The velocity bounce-back operation
between the boundary cell 𝒓b and the fluid cell 𝒓b + 𝒄𝑖𝛥𝑡 transfers linear
and angular momentum to the particle, corresponding to a force and torque

𝑭(𝑡) = 𝛥𝑥3
𝑞

∑
𝑖=1

𝒄𝑖 (𝑓𝑖(𝒓b, 𝑡) + 𝑓−𝑖(𝒓b + 𝒄𝑖𝛥𝑡, 𝑡)) , (4.47)

𝑴(𝑡) = 𝛥𝑥3
𝑞

∑
𝑖=1

(𝒓b − 𝒓) × 𝒄𝑖 (𝑓𝑖(𝒓b, 𝑡) + 𝑓−𝑖(𝒓b + 𝒄𝑖𝛥𝑡, 𝑡)) (4.48)

acting on the particle. Unlike Ladd’s original algorithm [304], we do not
average 𝑭(𝑡) and 𝑴(𝑡) over two time steps. This is generally only necessary
if oscillations in these quantities are observed between consecutive time steps
[306]. Note that the net force and torque of the system is still zero for a
microswimmer [19]: the above force and torque just account for momentum
transferred between fluid and particle. The particle trajectory is obtained
by summing these forces and torques, along with any externally applied
ones, and integrating numerically with a symplectic Euler integrator. The
symplecticity makes the simulation stable for longer times as it significantly
improves the conservation of energy and momentum.

As a particle moves across the lattice, the set of cells overlapped by the
particle changes. The original method by Ladd [304] has some shortcomings,
due to the presence of fluid inside the particle. These shortcomings include
forces exerted on the particle by the internal fluid [307] and the requirement
that the particle’s density is the same or larger than that of the fluid. The
modification by Aidun et al. [305] removes this unphysical fluid. This allows
the particle’s density to be less than that of the fluid, but significant density
differences lead to oscillations unless means are taken to improve numerical
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stability [308]. However, one now needs to destroy fluid in cells that are
newly overlapped by a particle and create fluid in cells that are vacated. The
former is straightforward to do, while the latter requires choosing a value for
each of the 𝑓𝑖 in the cell where new fluid is to be created. This initialization
of the new fluid cell is problematic, as LB has 𝑞 microscopic degrees of
freedom, more than the 𝑑 + 1 specified by the hydrodynamic boundary
condition. Thus, new fluid populations are created at their equilibrium
value, 𝑓𝑖(𝒓new, 𝑡) = 𝑓eq

𝑖 (𝒓new, 𝑡) from equation 4.4, whose velocity 𝒖b(𝒓new, 𝑡)
is given by equation 4.46. This creation and destruction of populations
violates instantaneous mass conservation, but is unproblematic as average
mass is conserved. In fact, fluid mass cannot be conserved in this scheme as
conserving it would violate the incompressibility of the fluid. This is not
strictly a problem since LB itself is not perfectly incompressible as discussed
in section 4.1, but is in conflict with the Stokes equation 2.10 we are trying to
model using it. However, the time-averaged fluid mass fluctuates around the
correct value while the particle traverses the grid. Momentum conservation
during creation and destruction of populations is ensured by applying a
force to the particle that balances any momentum destroyed or created:

𝑭(𝑡) = ±𝛥𝑥𝑑

𝛥𝑡
𝜌(𝒓f, 𝑡)𝒖(𝒓f, 𝑡). (4.49)

Further enhancements of the moving-boundary LB method are reviewed in
reference 309.

4.4.2 Moving-boundary electrokinetics

In section 4.4.1, the well-known moving boundary method for LB was
introduced. It is not mass-conserving, so a straightforward adaptation to
EK would cause the amount of solute to vary over time and thus violate
charge conservation. Furthermore, as the solute charge is typically far less
homogeneously distributed than the fluid mass, one can expect that charge
would not even be conserved on average over long time scales. A simulation
undergoing such a net charge drift will typically not be able to produce
physically correct results.

4.4.2.1 Simple charge conservation scheme

To avoid a net charge drift, any solute from a cell 𝒓old newly claimed
by a particle needs to be expelled and redistributed into the 𝑁f ≤ 𝑞 − 1
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surrounding non-boundary cells:

𝜌∗
𝑘(𝒓old + 𝒄𝑖𝛥𝑡, 𝑡) = 𝜌𝑘(𝒓old + 𝒄𝑖𝛥𝑡, 𝑡) + 1

𝑁f
𝜌𝑘(𝒓old, 𝑡). (4.50)

The 𝒄𝑖 point to the respective neighboring cells.
Cells vacated behind the particle are refilled by taking the sum of the

solute concentration of the surrounding non-boundary cells and dividing it
by 𝑁f + 1 to account for the fact that this amount of solute will now be
shared with one additional cell. This means that the solute concentration

𝜌∗
𝑘(𝒓new, 𝑡) = 1

𝑁f + 1

𝑁f

∑
𝑖=1

𝜌𝑘(𝒓new + 𝒄𝑖𝛥𝑡, 𝑡) (4.51)

is put into the vacated cell at 𝒓new. To conserve total solute mass, that
amount is then removed from the surrounding non-fluid cells in amounts
proportional to their current solute concentration:

𝜌∗
𝑘(𝒓new + 𝒄𝑖𝛥𝑡, 𝑡) = 𝜌𝑘(𝒓new + 𝒄𝑖𝛥𝑡, 𝑡) − 1

𝑁f
𝜌∗

𝑘(𝒓new, 𝑡). (4.52)

It should be noted that expulsion and vacation do not necessarily happen
at the same time in the front and back of a moving particle, and thus the
total number of boundary cells oscillates over time. The whole scheme is
illustrated in figure 4.5.

4.4.2.2 Enhanced partial volume scheme

The scheme introduced in section 4.4.2.1 has the disadvantage that it moves
large amounts of solute at few points in time, specifically entire cells’ worth of
solute in single simulation time steps. Therefore, as we will see in section 8.2,
the particle’s velocity can vary quite strongly during the time steps after
a cell has been claimed or vacated. To reduce these effects, we propose a
partial volume scheme which is illustrated in figure 4.6.

In the following, 𝛹(𝒓, 𝑡) is a field describing the volume fraction of the
cell at 𝒓 that is overlapped by a particle, with 𝛹 = 1 meaning that the
cell is completely inside the particle and 𝛹 = 0 completely outside. In the
calculation of the diffusive fluxes from equation 4.33, the concentrations
are replaced with ones that take into account that all solute resides in the
non-overlapped part of the cells:

𝜌𝑘(𝒓, 𝑡) → 𝜌𝑘(𝒓, 𝑡)
1 − 𝛹(𝒓, 𝑡)

. (4.53)
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𝑡 = 0𝛥𝑥/𝑣

𝒗

𝑡 = 0.25𝛥𝑥/𝑣

𝒗

𝑡 = 0.5𝛥𝑥/𝑣

𝒗

𝑡 = 0.75𝛥𝑥/𝑣

𝒗

𝑡 = 1𝛥𝑥/𝑣

𝒗

𝑡 = 1.25𝛥𝑥/𝑣

𝒗

Figure 4.5: Illustration of the mass conservation modification to the Ladd
boundary scheme to make it usable for EK. Cells whose center is inside
the particle are considered to be boundary nodes. The arrows indicate how
solute is drawn into vacated cells (panes 2, 3, and 6) and expelled from
newly-overlapped cells (panes 4 and 5).
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𝑡 = 0𝛥𝑥/𝑣

𝒗

𝑡 = 0.1𝛥𝑥/𝑣

𝒗

𝑡 = 0.2𝛥𝑥/𝑣

𝒗

𝑡 = 0.3𝛥𝑥/𝑣

𝒗

𝑡 = 0.4𝛥𝑥/𝑣

𝒗

𝑡 = 0.5𝛥𝑥/𝑣

𝒗

Overlapped volume 𝛹: 0 1

Figure 4.6: Illustration of the partial volume scheme for moving boundaries
in EK. The shading of the cells inside the particle corresponds to the
overlapped volume 𝛹 to indicate how the particle’s charge is distributed
across the cell layer at its surface. In the calculation of the diffusive flux, the
concentrations are scaled with 1−𝛹 to determine the effective concentrations.
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To prevent the resulting diffusive fluxes from diverging as 𝛹 → 1, we
renormalize them by scaling them with the volume:

𝑗diff
𝑘𝑖 (𝒓 + 1

2
𝒄𝑖𝛥𝑡, 𝑡)

→ 𝑗diff
𝑘𝑖 (𝒓 + 1

2
𝒄𝑖𝛥𝑡, 𝑡)(1 − 𝛹(𝒓, 𝑡))(1 − 𝛹(𝒓 + 𝒄𝑖𝛥𝑡, 𝑡)). (4.54)

This leads to the following modified expression for the flux:

𝑗diff
𝑘𝑖 (𝒓 + 1

2
𝒄𝑖𝛥𝑡, 𝑡)

= ( 𝐷𝑘
𝐴0𝑐𝑖𝛥𝑡

( 𝜌𝑘(𝒓, 𝑡)
1 − 𝛹(𝒓, 𝑡)

− 𝜌𝑘(𝒓 + 𝒄𝑖𝛥𝑡, 𝑡)
1 − 𝛹(𝒓 + 𝒄𝑖𝛥𝑡, 𝑡)

)

− 𝐷𝑘𝑧𝑘𝑒
2𝑘B𝑇𝐴0𝑐𝑖𝛥𝑡

( 𝜌𝑘(𝒓, 𝑡)
1 − 𝛹(𝒓, 𝑡)

+ 𝜌𝑘(𝒓 + 𝒄𝑖𝛥𝑡, 𝑡)
1 − 𝛹(𝒓 + 𝒄𝑖𝛥𝑡, 𝑡)

)

⋅ (𝛷(𝒓, 𝑡) − 𝛷(𝒓 + 𝒄𝑖𝛥𝑡, 𝑡))) (1 − 𝛹(𝒓, 𝑡)) (1 − 𝛹(𝒓 + 𝒄𝑖𝛥𝑡, 𝑡)) .

(4.55)

With this change, refilling vacated cells as per equations 4.51 and 4.52 is no
longer necessary. They can be set to zero concentration and will be filled up
by the diffusive flux again as 𝛹 increases. The renormalization also needs to
be taken into account when considering surface reactions via equation 2.41,
where the reaction now operates not only on the cell at 𝒓b+𝒄𝑖𝛥𝑡, but also on
𝒓b + 2𝒄𝑖𝛥𝑡 in shares of 1 − 𝛹(𝒓b + 𝒄𝑖𝛥𝑡, 𝑡) and 𝛹(𝒓b + 𝒄𝑖𝛥𝑡, 𝑡), respectively.

We approximate 𝛹 numerically by subdividing each cell into 2𝑑 equally-
sized sub-cells and determining how many of these are completely inside
and completely outside the particle. For those cells that are neither, the
subdivision is recursively repeated up to a maximum depth of 𝑛max = 4.
This can be formally expressed as

𝛹(𝒓, 𝑡) ≈ 𝛹0(𝒓,𝛥𝑥, 𝒫(𝑡)) (4.56)

with

𝛹𝑛(𝒓,𝛥𝑥, 𝒫(𝑡)) =

⎧{{{
⎨{{{⎩

1 𝐾(𝒓,𝛥𝑥, 𝒫(𝑡)) = 2𝑑

0 𝐾(𝒓,𝛥𝑥, 𝒫(𝑡)) = 0
1
2𝑑 𝐾(𝒓,𝛥𝑥, 𝒫(𝑡)) 𝑛 = 𝑛max

1
2𝑑

2𝑑

∑
𝑖=1

𝛹𝑛+1(𝒓 + 𝒄𝑖
𝛥𝑥
4 , 𝛥𝑥

2 , 𝒫(𝑡)) else

(4.57)
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where the sum runs over the 2𝑑 neighbor vectors 𝒄𝑖 = (±1, … ,±1)⊺ pointing
through the cell corners. The function 𝐾 counts how many corners of the
axis-aligned cube with edge length 𝛥𝑥 centered at 𝒓 are inside the particle.
Assuming a spherical particle of radius 𝑅 centered at 𝒓0, it becomes

𝐾(𝒓,𝛥𝑥, 𝒫(𝑡)) = 𝐾(𝒓, 𝛥𝑥, 𝒓0(𝑡), 𝑅) =
2𝑑

∑
𝑖=1

𝜃(𝑅 − ∣𝒓 + 𝒄𝑖
𝛥𝑥
2

− 𝒓0(𝑡)∣) .

(4.58)
Expelling solute from a cell that is claimed by a particle via equation 4.50

is, however, still necessary — even with the modified expression for the flux
— as the cell is not necessarily completely empty by the time it is claimed,
due to the discretized motion of the colloid. The expelled amount of solute
with equation 4.55 is much smaller than with equation 4.33 and thus the
effect of this sudden change on the simulation is reduced to acceptable levels.

One further source of sudden variations in solute fluxes is the change in
electrostatic potential when the volume across which a particle’s charge is
distributed varies due to the fluctuation in the number of boundary cells.
Therefore, when calculating the electrostatic potential, each particle’s total
charge 𝑄 is distributed among all cells that are at least partially overlapped
by that particle:

𝜌b(𝒓, 𝑡) = 𝑄𝛹(𝒓, 𝑡)
𝑉p

, (4.59)

with 𝑉p the particle’s (non-discrete) volume. Inhomogeneous charge distri-
butions are also possible as long as the charge in a cell varies smoothly while
the cell is slowly claimed or vacated by the colloidal particle.

Formally, every partially-filled cell at 𝒓s on the surface of the particle
now contains a charge dipole 𝒑(𝒓s): the part of the cell that lies inside the
particle contains the charge 𝜌b(𝒓s, 𝑡), while the rest of the cell contains mostly
charge of the opposite sign from the electric double layer. These dipoles
have been neglected for purposes of this thesis, but the method sketched
out in the rest of this paragraph could be used to calculate electrostatic
interactions more completely. The dipole density of equation 3.67 might be
obtained by a modified version of the subdivision scheme of equation 4.56.
The potential due to these dipoles could be calculated using the method
of section 4.3.2. The force exerted by the dipoles on the monopoles in the
fluid and in the particle would be calculated from the potential as before, in
a fashion resembling equation 3.68. The force and torque exerted on the
dipoles would need to be calculated by discretizing equations 3.70 and 3.71
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as in section 4.2 and applying the result to the particle centered at 𝒓:

𝑭(𝑡) = −∇ (𝒑(𝒓s, 𝑡) ⋅ ∇𝛷(𝒓, 𝑡))
= − (𝒑(𝒓s, 𝑡) ⋅ 𝛁) (∇𝛷(𝒓, 𝑡)) − 𝒑(𝒓s, 𝑡) × (𝛁 × (∇𝛷(𝒓, 𝑡)))⏟⏟⏟⏟⏟⏟⏟

=0

≈
𝑑

∑
𝑖=1

𝑑
∑
𝑗=1

𝑝𝑖(𝒓s, 𝑡)𝛯𝑖𝑗(𝒓s, 𝑡) ̂𝒆𝑗, (4.60)

𝑴(𝑡) = −𝒑(𝒓s, 𝑡) × ∇𝛷(𝒓, 𝑡) + (𝒓s − 𝒓) × 𝑭(𝑡).

≈ 𝒑(𝒓s, 𝑡) ×
𝑑

∑
𝑖=1

1
2𝛥𝑥

(𝛷(𝒓 − 𝛥𝑥 ̂𝒆𝑖, 𝑡) − 𝛷(𝒓 + 𝛥𝑥 ̂𝒆𝑖, 𝑡)) ̂𝒆𝑖

+ (𝒓s − 𝒓) × 𝑭(𝑡), (4.61)

with

𝛯𝑖𝑖(𝒓, 𝑡) = 1
2𝛥𝑥

(−𝛷(𝒓 + 𝛥𝑥 ̂𝒆𝑖, 𝑡) + 2𝛷(𝒓, 𝑡) − 𝛷(𝒓 − 𝛥𝑥 ̂𝒆𝑖, 𝑡)) ,

𝛯𝑖𝑗(𝒓, 𝑡) = 1
4𝛥𝑥2 (−𝛷(𝒓 + 𝛥𝑥 ̂𝒆𝑖 + 𝛥𝑥 ̂𝒆𝑗, 𝑡) + 𝛷(𝒓 + 𝛥𝑥 ̂𝒆𝑖 − 𝛥𝑥 ̂𝒆𝑗, 𝑡)

+ 𝛷(𝒓 − 𝛥𝑥 ̂𝒆𝑖 + 𝛥𝑥 ̂𝒆𝑗, 𝑡) − 𝛷(𝒓 − 𝛥𝑥 ̂𝒆𝑖 − 𝛥𝑥 ̂𝒆𝑗, 𝑡)) .

4.4.3 Moving-boundary Oldroyd-B
The moving boundary method has been extended to FV schemes in sec-
tion 4.4.2 for application in chapter 8 and reference 299, but only in the
context of ion concentrations propagating according to the electrokinetic
equations. Now, we take a similar path to apply it to the 𝞽 of a viscoelastic
medium. Section 4.4.2 takes precautions to ensure that charge is conserved.
We do the same here to ensure that stress — whose diagonal elements
correspond to stored energy — is not created or destroyed while cells are
converted between fluid and solid. Section 4.4.2.2 further calculates the
fraction of a cell that is overlapped by the particle and uses that information
to smooth out the conversion process, which chapter 8 finds to significantly
decrease oscillations in the particle’s speed. For the simulations in sec-
tion 7.2.5, we find such smoothing to be unnecessary, and thus adapt the
simpler scheme of section 4.4.2.1 in the following:

A fluid cell at 𝒓old that is destroyed in front of the particle has its stress
distributed among the surrounding fluid cells as

𝞽∗(𝒓old + 𝒄𝑖𝛥𝑡, 𝑡) = 𝞽(𝒓old + 𝒄𝑖𝛥𝑡, 𝑡) + 1
𝑁f

𝞽(𝒓old, 𝑡). (4.62)
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A cell behind the particle that is created with new fluid receives

𝞽∗(𝒓new, 𝑡) = 1
𝑁f + 1

𝑁f

∑
𝑖=1

𝞽(𝒓new + 𝒄𝑖𝛥𝑡, 𝑡), (4.63)

and the corresponding amount is removed from the neighboring cells:

𝞽∗(𝒓new + 𝒄𝑖𝛥𝑡, 𝑡) = 𝞽(𝒓new + 𝒄𝑖𝛥𝑡, 𝑡) − 1
𝑁f

𝞽(𝒓new, 𝑡 + 𝛥𝑡). (4.64)

4.5 Implementation
Most of the methods described in this chapter have been implemented in
the context of the waLBerla framework. waLBerla is written in modern C++
and started out as a high-performance framework for LB algorithms [310],
but over time evolved into a framework for grid-based algorithms in general
[9]. It provides fields and other basic data structures, as well as the domain
decomposition necessary to store pieces of these fields in blocks of equal
numbers of cells, allowing them to be distributed across multiple nodes
of a compute cluster. Exchange of data between neighboring blocks, e.g.
via ghost layers or reductions, is possible using a communication module
based on the Message Passing Interface (MPI) [311]. Fields can be exported
to files for use with visualization software such as ParaView [312], or for
checkpointing and resuming simulations [313].

waLBerla contains a number of hand-written lattice algorithms, called
“sweeps” or “kernels”, including one for the LB variant described in sec-
tion 4.1. Maintaining a large number of implementations of LB and other
algorithms is unsustainable, especially since each of them had to be manually
optimized for efficiency on current and future compute clusters. Therefore,
recent work has focused on automatically generating and optimizing them.
The pystencils project [314] is able to automatically generate optimal kernels
for mathematical expressions of the form

𝑌0(𝒓, 𝑡 + 𝛥𝑡) = 𝑓({𝑌𝑖(𝒓 + 𝒄𝑗𝛥𝑡, 𝑡 + 𝛥𝑡)}𝑖,𝑗). (4.65)

Any local lattice algorithm can be expressed in this way, so pystencils is
predestined for use with a companion project: lbmpy [315] can generate
such expressions for LBs with any combination of neighbor set, force model,
relaxation model, thermalized or athermal, etc., again including the one
described in section 4.1. pystencils is also capable of automatically per-
forming FV discretizations, so it can generate code for the viscoelastic and
electrokinetic methods of section 4.2.
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waLBerla also contains one non-local lattice algorithm, namely the FFT.
Its purpose is the electrostatics solver of section 4.3, and it is implemented
using the PFFT library [316]. A multigrid solver is also available for the
same purpose [317], but the FFT solver is generally expected to be more
efficient except for very large problem sizes, strong parallelization, or with
varying dielectric coefficients. Complementing the lattice methods, waLBerla
includes a rigid-body dynamics module which can be used for the simulation
of particles [318, 319]. Particles can be coupled to LB with the method
described in section 4.4 [309, 320].

Locally-refined grids are also supported by the lattice algorithms [321]
and the rigid-body dynamics module [308] to focus computational accuracy
on regions of interest, e.g. the vicinity of a particle or surface. Unfortunately,
the resolution is constant over an entire block, and neighboring blocks can
only have resolution ratios of 2 ∶ 1. This means that only gradual resolution
changes are possible, rendering this approach effective mainly for the problem
of taking the bulk limit. Similarly, systems with strong gradients like the ones
discussed in sections 7.2.3 and 7.2.4 would lend themselves well to refinement.
On the other hand, systems where the resolution changes frequently, such
as required for a moderately dense suspension of particles, thus only have a
minor benefit while at the same time introducing computational overhead
and considerable additional complexity to the simulation.

waLBerla1, pystencils2, and lbmpy3 are available as open-source code on
their respective web sites. The far-field method of chapter 3 was obviously
not implemented into waLBerla, but its code is published too4.

1https://www.walberla.net/
2https://pypi.org/project/pystencils/
3https://pypi.org/project/lbmpy/
4https://doi.org/10.24416/uu01-bmgd4e
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5 A lattice Boltzmann model for
squirmers

Directed motion, or motility, is of paramount importance to biology [322].
For example, it allows bacteria to move toward a food source [323] and
fish to swim in formations that protect them from predators [45]. Such
systems are inherently out of equilibrium. In the presence of other bacteria,
motility can lead to collective effects [324–326] bearing resemblance of the
schooling of fish or the swarming of birds, suggesting that the specifics of the
propulsion, or even the length scale on which it occurs, have little effect on
the overall behavior. Yet we know that these two situations are drastically
different from the perspective of interactions via the medium, which are tied
to the way the organisms achieve propulsion [45].

To experimentally better understand how the propulsion method affects
the motion of an individual biological swimmer and how the motion affects
the collective behavior of many biological swimmers together, artificial
analogues have been developed. Realizations include catalytic [26, 105] and
self-thermophoretic [40, 110] propulsion methods. These models have a
well-defined geometrical shape and characterizable chemical properties, thus
eliminating biological complications like shape changes or the beating of
cilia. Yet, despite their simplicity, they show the same kinds of collective
effects as their biological counterparts [119, 122].

Theoretical description of motility and the associated out-of-equilibrium
phenomena is possible using models such as the one by Vicsek [52] or the
active Brownian particle (ABP) model [172–174]. These approaches have
been quite successful in qualitatively capturing the behaviors observed in
nature. However both neglect the hydrodynamic interactions mediated
by the surrounding fluid, which can be important for microorganisms and
their artificial counterparts [45]. One way to overcome this limitation is the
squirmer model [20, 21]: here, the microswimmer is described as a spherical
object with a simple inhomogeneous surface slip velocity, typically suspended
in a Newtonian fluid. The squirmer model’s long-ranged hydrodynamic
interactions lead to reorientation like in the Vicsek model, and, when
complemented with a near-field repulsion, it accounts for the collisions that
are captured by the ABP model. The squirmer model has proven to be an
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effective tool to model the effect of hydrodynamics in suspensions of both
bacteria and man-made swimmers [75, 157, 158]. Further advantages of
computer simulations include providing additional insight by giving direct
access to quantities that are difficult or impossible to measure in experiment
and by allowing for easy modification of parameters.

In this chapter, we implement the squirmer model numerically using
the lattice Boltzmann (LB) method [261], making use of the Ladd moving
boundary conditions [304, 305]. LB is in general a Navier-Stokes solver,
but it can serve as a Stokes solver at the Reynolds numbers relevant to the
systems considered in this thesis. The main advantages of LB over competing
methods are momentum and mass conservation to machine precision, very
low compressibility and good obedience of the Stokes regime, as well as
facile coupling to suspended particles. Furthermore, the algorithm scales to
parallelize across large supercomputers [9, 310] and is fully deterministic.
One shortcoming compared to methods [327, 328] based on the Lorentz
reciprocal theorem [329] is that LB does not permit Reynolds numbers
that are exactly zero; the achieved Reynolds numbers are usually orders of
magnitude closer to unity than the actual physical Reynolds number of the
swimmer. To eliminate inertial effects, one thus needs to scale simulation
parameters until the point is found where a further decrease of the Reynolds
number does not change the result.

Previous simulational studies of squirmers have used methods such as
multi-particle collision dynamics (MPCD) [65, 129, 149], the smooth profile
method (SP) [330], the finite element method (FEM) [331–333], the boundary
element method (BEM) [148, 152, 153, 334], and Stokesian dynamics (SD)
[161, 162, 164, 335], but also LB [151, 157, 336, 337]. We verify our
implementation against well-known results from the literature [148, 153]
and show that even for these basic cases several new things may be learned.
Specifically, we study squirmers in bulk both individually and scattering
off each other, as well as a squirmer oscillating between the two walls of
a channel. In chapter 6, we will follow up by considering the interaction
between a squirmer and an immobile spherical obstacle. We find that LB is
well-capable of reproducing results obtained from other methods [148, 153],
but requires a higher resolution to reproduce accurate results than is known
from experience with passive particles in LB. This insight will enable us
to accurately simulate dense suspensions of squirmers in the future and to
study phenomena such as motility-induced phase separation (MIPS) [55, 65,
75, 158].

The remainder of this chapter is laid out as follows: In section 5.1, we
summarize the relevant aspects of the LB method. In section 5.2, we apply
this numerical method to squirmers in bulk and interacting with boundaries
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and other squirmers. There, we also discuss implementation problems that
arise and how our simulations compare to previous implementations, before
we conclude in section 5.3.

5.1 Model and methods

In this chapter, we consider squirmers in Stokes flow and various geometries.
The Stokes equations of section 2.1.3 are solved using the LB method
of section 4.1. The squirmer, introduced in section 2.4, is incorporated
through the moving boundary scheme of section 4.4.1. The squirmer’s
surface velocity, equation 2.44, is added to the moving boundary’s surface
velocity, equation 4.46. A short-range Weeks-Chandler-Andersen (WCA)
repulsion per equation 5.1 between pairs of swimmers, as well as between
swimmer-obstacle pairs, is included in addition to the hydrodynamic forces
of equations 4.47 and 4.49. Based on the sum of the forces of equations 4.47
to 4.49 and 5.1, the swimmer’s trajectory can be integrated using a standard
symplectic Euler scheme. We employ the waLBerla simulation framework
as summarized in section 4.5. The same method has been implemented in
previous works by other authors [157, 336–339].

We should point out the following concerning our LB calculations here:
The minimal gap between squirmer and obstacle that LB can accurately
resolve is limited to sizes around the lattice constant 𝛥𝑥, due to our LB’s
lack of lubrication corrections [162, 254, 340]. Note that such corrections
exist for driven spheres and some other shapes, but a specific implementation
for a squirmer has not yet been formulated, due to the complexity of the
boundary problem. We therefore impose a short-ranged WCA potential
[341] between the obstacle and squirmer. This is a smooth approximation
to a hard-core repulsion and is given by

𝑈(𝒓S) = 4𝜖 ( 𝜎
|𝒓 − 𝒓S|

)
12

− 4𝜖( 𝜎
|𝒓 − 𝒓S|

)
6

+ 𝜖 , (5.1)

for 0 < |𝒓 − 𝒓S| < 21/6𝜎 and set to 0 for |𝒓 − 𝒓S| ≥ 21/6𝜎. The force
𝑭(𝒓S) = −∇S𝑈(𝒓S) ensures that the squirmer at 𝒓S and obstacle at 𝒓
remain sufficiently separated. A minimal distance of one LB cell is achieved
with 𝜖 = 1𝜌𝛥𝑥5/𝛥𝑡2 and 𝜎 = 1.34𝛥𝑥. ∇S differentiates with respect to 𝒓S.
We do not resort to actual hard-core repulsions, as a discontinuous potential
leads to issues with the underlying algorithm for the positional update of
our squirmer in waLBerla [9, 309, 310].
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5.2 Validation
In this section, we describe the simple validation tests for our numerical
implementation. We start with the far field, where we simulate the bulk
flow field and interactions between two squirmers. After that, we investigate
a system where the near field plays a dominant role, namely a squirmer
confined in a narrow cylindrical tube. We refer to section 6.4.5 for the
scattering of a squirmer off a spherical obstacle, where near and far field are
both important.

5.2.1 Squirmers in bulk
In figure 5.1, we show the flow fields of the three types of squirmer in
bulk fluid. As LB is typically used with periodic boundary conditions, a
direct comparison to equation 2.45 would require either an extremely large
simulation domain in LB or incorporating the effect of the periodic images
into the analytic solution [342, 343]. The latter would require an Ewald
summation approach [162, 344], but can be approximated by summing over a
spherical shell of periodic images [170, 342]. The largest differences between
this approximate periodic analytic solution and the LB solution are found
at ±45∘ from ̂𝒆, where the flow magnitude is small. Ignoring these regions,
the mean error is around 8% at a resolution of 𝑅 = 8𝛥𝑥. Both of these
deviations can be attributed to discretization errors. As we will discuss
below, 𝑅 (in units of the lattice spacing) needs to have a certain minimal
value to avoid more severe discretization artifacts.

5.2.2 Impact of resolution
Figure 5.1 was obtained at a resolution of 8 cells per squirmer radius, i.e.
𝑅 = 8𝛥𝑥. In moving-boundary simulations of passive spheres, one typically
aims for a resolution of 𝑅 ≈ 4𝛥𝑥 which provides sufficient accuracy while
minimizing computational effort [340]. In literature, resolutions around
𝑅 = 8𝛥𝑥 are often used for squirmers [336, 338, 339], but usually not
explicitly justified. Some authors [157, 337, 345] do use smaller resolutions
around 𝑅 = 3𝛥𝑥, which for squirmers appears to only give usable results
in the authors’ specific case without preferred direction. Problems at low
resolutions were first mentioned in reference 346. We find that resolutions
below a value of 𝑅 ≈ 6𝛥𝑥 lead to strong oscillations in the flow field, causing
an alternating velocity pattern along the direction in which the squirmer
moves, see figure 5.2.
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Figure 5.1: Top: the analytic flow fields of squirmers with 𝛽 ∈ {−5, 0, 5}
in an unbounded domain (𝐿 = ∞), as in figure 2.2. The red arrows indicate
that the squirmer is oriented such that it moves to the right. Bottom: the
flow fields of the same squirmers at a resolution of 𝑅 = 8𝛥𝑥 as obtained
via LB in a cubic box of length 𝐿 = 10𝑅 with periodic boundary conditions.
As one can see, the flow field is heavily influenced by the periodicity. The
analytic solution can also be determined for periodic boundary conditions
and is indistinguishable from the corresponding flow fields obtained by LB.
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Figure 5.2: Visualization of the deteriorated flow field after simulating a
squirmer of radius 𝑅 = 4𝛥𝑥 in a box of length 𝐿 = 10𝛥𝑥 for 𝑇 = 1.5⋅105𝛥𝑡.
𝑢𝑥, the 𝑥-component of the fluid velocity, is shown in the 𝑥𝑦-plane and
normalized by the squirmer speed 𝑣0. The arrow shown in gray indicates
the squirmer’s orientation.
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Figure 5.3: Top: flow velocity 𝑢𝑥, normalized by the squirmer speed 𝑣0,
along the 𝑥-axis for 𝐿 = 10𝑅. For high resolutions (𝑅 = 12𝛥𝑥), the curve
is smooth, while for low resolutions (𝑅 = 4𝛥𝑥) an alternating pattern of
faster and slower cells is visible that grows more distinct over time, matching
the stripes in figure 5.2. Bottom: Standard deviation of the velocity error
obtained by comparing the flow field 𝑢𝑅 at a radius 𝑅 to that of a high-
resolution simulation (𝑅 = 16𝛥𝑥) for the entire simulation domain. Larger
values correspond to more inhomogeneous errors, i.e., the development of
the alternating pattern described in the main text. Time 𝑡 = 1000𝛥𝑡 and
different box sizes 𝐿 ∈ {10𝑅, 15𝑅, 20𝑅} are shown. The difference between
𝐿 = 15𝑅 and 𝐿 = 20𝑅 can be attributed to our error fitting procedure.
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As seen in figure 5.3, the magnitude of the oscillation increases over
time, suggesting a self-reinforcing numerical artifact. While at short times,
the true flow can still be obtained by averaging over the oscillation, after
several million time steps, they become so strong that the true flow is
almost completely obscured. Eventually the simulation becomes unstable
because LB does not accurately handle strong velocity gradients like those
in figure 5.2 well. This phenomenon is most often seen in systems with a
preferred direction. Alarcón et al. [157, 337], for example, do not see this
effect because they have dense suspensions of squirmers that continuously
change their orientations. For comparison, in MPCD, squirmer radii of three
collision cells, each of which contain an average of 80 MPCD particles, are
reported to have been used [65]. MPCD does not use a fixed grid, so it is
less prone to discretization artifacts like the one discussed here. Since the
computational effort for an LB cell and for an MPCD particle are on the
same order of magnitude, the resolution requirement can be considered to
be similar for LB and MPCD.

In figure 5.4, we show how the squirmer’s speed 𝑣 depends on the resolution
as given by the squirmer’s radius 𝑅 and on the box length 𝐿. In analytic
theory and in LB in the infinite-resolution limit, this speed equals the
squirmer parameter 𝑣0 from equation 2.46. In figure 5.4 we observe that we
approach 𝑣0 from below as resolution increases. At 𝑅 = 6𝛥𝑥, we are already
within 0.5% of the correct value (0.2% at 𝑅 = 12𝛥𝑥) for the largest box size.
For the smaller box sizes, the interaction of the squirmer with its periodic
images decreases the velocity slightly. For comparison, the same data is
also plotted for a passive sphere being dragged through a resting fluid at
otherwise identical parameters. The periodicity effect is much weaker for
the squirmer than for the passive sphere since the latter’s flow is monopolar
to leading order and thus decays more slowly than the squirmer’s. Despite
the seemingly good agreement of the observed squirmer velocity with the
prescribed squirmer velocity even for small resolutions, the stripe pattern
discussed in the previous paragraph massively modifies the flow field, to
the extent that simulations at small resolutions simply give no meaningful
results.

While the squirmer moves across the lattice, some variation in its speed is
expected due to the sphere being composed of varying numbers of discrete
cubes. As expected, figure 5.4 shows that the variation decreases with
resolution, however the variation is much larger than for the equally-resolved
passive sphere dragged through the fluid. The latter can be attributed to
the cause of the motion — the squirmer is dragged along by the flow its own
surface causes — and to the fact that this surface is significantly affected by
the slight changes in the number of cells occupied by a sphere as it moves.
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Figure 5.4: Top: A squirmer’s (orange) and a passive sphere’s (blue) mean
velocity ⟨𝑣⟩, normalized by the expected bulk speed 𝑣0, as a function of the
resolution of the squirmer/passive sphere. Bottom: Normalized variance
of the respective bodies’ velocities indicating the spread around the mean
velocity. The resolution is given by the radius 𝑅 in lattice units. We show
results for three box sizes as given by the edge length 𝐿, also in lattice units.
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For a graphical explanation of this problem, see section 4.4, which discusses
a solution to a related problem for the electrophoretically-driven particle of
chapter 8. For the squirmer, an approach based on the method of Noble
and Torczynski [347] might prove useful.

5.2.3 Interaction between two squirmers
Now that we have confirmed that our LB implementation is capable of
producing the correct flow around a squirmer, we check that a squirmer
correctly reacts to the flow produced by another squirmer. This geometry
is illustrated in figure 5.5. The results in this section are reproduced from
reference 348. Here, we approximated the situation first considered by
Ishikawa et al. [148], who positioned two squirmers facing opposite each
other, separated by a distance of 12𝑅 and spaced apart laterally by varying
distances 𝑑. They solved for the trajectories using BEM, which assumes an
infinite fluid domain size and discretizes the squirmers’ surfaces. In our LB
calculations, we used a squirmer radius of 𝑅 = 9𝛥𝑥 and a cubic, periodic
simulation domain with edge length 𝐿 = 250𝛥𝑥 to approximate the bulk
calculation of reference 148.

Figure 5.6 shows the resulting trajectories and those of reference 148.
There is good agreement and our trajectories are considerably smoother
than those given by Ishikawa et al. [148]. Part of the deviations can be
attributed to the use of periodic boundary conditions in our simulation [170],
while Ishikawa et al. were able to perform their calculations in bulk. The
interactions with the periodic images in this case cause the squirmers to
move slightly closer than they would in bulk. The increased smoothness is
mostly related to the advancement in computational performance since 2006
and not an intrinsic issue with BEM. It is worth noting that we have used a
far coarser resolution for our squirmers than used by Ishikawa et al. because
we also need to discretize the entire fluid volume, while BEM only discretizes
the surface. The good match between the much finer BEM resolution and
our LB results is promising for simulations at much higher squirmer volume
fractions, where we can reasonably expect to be able to maintain our current
resolution and thus keep roughly the same simulation speed.

5.2.4 Squirmer in a cylindrical channel
Now that we have determined the resolution required for an accurate simu-
lation and checked that two squirmers interact with each other correctly, we
can investigate systems where the near field plays a dominant role. LB does
not make use of the method of reflections to capture the effect of solid/no-slip
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Figure 5.5: Geometry of the two passing squirmers of radius 𝑅 with lateral
separation 2𝑦0 and initial propulsion direction 𝒗.
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Figure 5.6: Trajectories of two squirmers with 𝛽 = 5 passing each other.
The initial configuration is specified by the initial lateral separation 𝑑 = 2𝑦0
and the separation in the direction of their original orientation. The results of
reference 148 are shown as dashed lines. Our LB simulations are performed
for squirmers with 𝑅 = 9𝛥𝑥 in a periodic box of length 𝐿 = 250𝛥𝑥.
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boundaries like in section 3.3 and therefore can accurately reproduce the
near-field flow when squirmers approach obstacles closer than their diameter.
Recall from section 5.1 that we do not include lubrication corrections, which
would be necessary to accurately capture the flow between two objects that
are spaced less than 𝛥𝑥 apart. Keeping this in mind, we can now perform
simulations where the near-field flow plays a role. Zhu et al. [153] study
a neutral (𝛽 = 0) squirmer oscillating in a tube with circular diameter
𝐷 = 20𝑅/3 and length 𝐿 = 3𝜋𝑅 with a periodic boundary condition only
along its length, starting from different distances 𝑦0 to the boundary and an
initial orientation parallel to the symmetry axis. This geometry is illustrated
in figure 5.7. The results in this section are reproduced from reference 348.

The trajectories we obtain are compared to the results from reference 153
in figure 5.8. Both the oscillation amplitude and the period match to within
3% of the literature value. The reorientation of the squirmer when it is near
the wall is a near-field effect, so the agreement confirms that our LB method
sufficiently captures it. Since Zhu et al. [153] use BEM with local mesh
refinement [148, 224] when squirmer and wall are near contact, they capture
near-field effects more accurately than LB does at the resolution we used.
This explains the slight deviations in the trajectories of figure 5.8, but the
good agreement confirms that the system is rather robust to these differences.
To obtain equally good results in LB at manageable computational effort,
one would need to resort to an adaptive grid resolution [321].

5.3 Summary
We have described in detail our implementation of a hydrodynamic squirmer
model in an LB fluid dynamics solver, where we build upon a large body of
literature on this topic [261, 304, 305]. We have confirmed in four scenarios
that our LB squirmer implementation can accurately reproduce signature
features of the squirmer model, including: (i) The analytic flow field around
the squirmer, accounting for periodicity effects. (ii) The interaction between
two squirmers, as originally obtained by Ishikawa et al. [148] using the BEM.
(iii) The oscillation of a squirmer in a cylindrical tube as studied originally
using BEM by Zhu et al. [153]. (iv) Section 6.4.5 will successfully make
use of the same method to study the scattering and orbiting of a squirmer
around a spherical obstacle.

Through our study we have also demonstrated that the LB squirmer
implementation is sensitive to discretization artifacts, more so than has been
reported for passive particles. Throughout the literature various values of
the resolution of the squirmer are used. Here, we show that a refinement
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𝒗2𝑅
𝑦0

𝐷

Figure 5.7: Geometry of the squirmer of radius 𝑅 in the cylindrical channel
of diameter 𝐷, viewed in cross-section (left) and along the channel (right).
The squirmer’s initial propulsion direction is 𝒗 and it starts off-centered by
𝑦0.
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Figure 5.8: Trajectories of squirmers (𝑅 = 9𝛥𝑥) with different initial
displacements 𝑦0 inside a tube of length 𝐿 = 3𝜋𝑅 and circular diameter
𝐷 = 20𝑅/3, compared to the results of reference 153, which simulates
the equivalent system using BEM. These are shown using black dashes.
The dotted lines indicate the point of closest approach before the squirmer
touches the boundary, which itself is marked using the lines at the top and
bottom of the plot.
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of at least 8 lattice cells for the radius of the squirmer is necessary to
avoid numerical artifacts in the flow field. These artifacts are particularly
pronounced in situations where there is persistent motion and may lead to
severe numerical instabilities.

We have confirmed that LB is capable of accurately reproducing results
obtained with other methods. Since LB offers several advantages over
competing methods — such as particle coupling without re-meshing (unlike
FEM and BEM), incompressibility (unlike MPCD), and correct near-field
hydrodynamics (unlike SD) — it provides a useful tool for the hydrodynamic
study of microswimmers.

We have made our LB squirmer implementation available within the open-
source software waLBerla [9, 310], which will make it possible for anyone
to simulate large-scale systems containing many squirmers and complex
boundary conditions. In LB the computational effort depends only on the
number of cells; the number of squirmers contributes very little to the
overall simulation time. It should be noted that we have not incorporated
lubrication corrections [162, 340] here, which will be a topic for further
method development.

The only other freely-available implementation of squirmers in LB that
we are aware of is in Ludwig [157, 337, 349]; however the one in waLBerla
may be easier to extend for advanced problems such as chemical squirmers
[154], uses one of the most efficient LB implementations [9, 310], and can
make use of adaptive grid refinement [321] to reduce computational effort in
systems with inhomogeneous particle concentrations.

101



102



6 Hydrodynamic mobility reversal
of squirmers near flat and
curved surfaces

An increasing body of experimental and theoretical work demonstrates
that the proximity of surfaces has an important effect on the behavior of
self-propelled particles. In biology, spermatozoa [90, 350, 351] and bacteria
[70] can circle near a flat wall, which has been attributed to hydrodynamic
interactions and the specifics of flagellar beating [32, 47, 352–357]. Artificial
self-propelled particles, which can move through the catalytic decomposition
of hydrogen peroxide [25, 26], i.e., chemical swimmers, also respond to the
presence of a surface [111, 358–361]. In this case, there can be both a
hydrodynamic [151, 163, 237, 238, 352, 362] and a chemical coupling to the
surface [359, 361, 363–366], which themselves are intimately linked through
the way they lead to self-propulsion [25, 26, 34, 35, 106, 107, 132, 367–371].

Experimentally, chemical swimmers are well known to be orientationally
locked near a flat surface [359, 361]. This locking has been linked to specifics
of the reaction mechanism and the local hydrodynamic interactions that it
induces [359, 364]. Chemical swimmers may also follow the surface topology.
For example, they interact with small variations of the substrate’s height
[111, 361], as has been qualitatively described using simple theoretical model
swimmers [361]. In addition, chemical patterning of the surface has been
shown to significantly modify the mobility of a chemical swimmer [135, 372–
375]. These man-made swimmers can also follow strongly curved surfaces,
even leading them to orbit around spherical obstacles [358, 360, 376].

The orbiting of swimmers has been studied extensively using hydrody-
namic descriptions [163, 164, 377]. In the far field, the associated hydrody-
namic problem is typically solved using the method-of-reflections approxima-
tion [238] and Faxén’s law [251, 252]. Spagnolie et al. [163] account for the
leading-order hydrodynamic force-dipole moment in their analysis and find
that there is a critical radius for orbiting. Only pusher swimmers — ones
that have an extensile flow field — enter such a trajectory [163]; pullers on
the other hand are trapped in a hovering state, wherein they point straight
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into the surface. A similar far-field approach has been taken by Kurzthaler
and Stone [362] to study the interaction of a squirmer with a corrugated
planar surface. Method-of-reflections approximations have also been applied
to chemical interactions to study the problem of a chemically-propelled
swimmer at an obstacle [366, 378].

The methods of reflections is known to break down for small swimmer-
obstacle separations [237]. In the lubrication regime, which captures the
behavior for vanishing gap sizes, a swimmer’s ability to follow a path along
a planar wall has been examined [336, 339]. Specifically, Lintuvuori et al.
[336] studied a squirmer, which is a simple model swimmer that accounts
for finite-size contributions to the flow field. The results for a squirmer near
a flat wall may be readily transferred to orbiting around objects with low
curvature. Unfortunately, lubrication theory does not provide substantial
insight other than for the hovering state, wherein the swimmer’s direction
of motion points into the obstacle and no tangential displacement occurs.

A combination of lubrication theory (zero separation, 𝑑 ≪ 𝑅) and far-field
results (infinite separation, 𝑑 ≫ 𝑅) is often used in an attempt to bridge
the gap between these two regimes without having to calculate the exact
near-field hydrodynamics [164, 336, 339]. This approximation gives rise to
steady orbiting pullers and oscillatory orbits for pushers [336], the latter of
which are a result of a competition between the two regimes. The critical
radius for orbiting will also be reduced by this interplay [164].

In the case of a flat wall, the intermediate regime has been resolved using
the boundary element method (BEM) [152], as well as the lattice Boltzmann
(LB) method [167, 336, 339], and multi-particle collision dynamics (MPCD)
[379]. Ishimoto and Gaffney [152] observe that a puller squirmer moves
stably along the wall, pointing slightly toward it. Lintuvuori et al. [336]
reproduce the behaviors found in their analytic predictions, which combine
the far field and lubrication regimes. However, this level of analysis has not
yet been performed for orbiting.

In this chapter, we examine in-depth the effect of the surface curvature on
the hydrodynamic orbiting of a squirmer and take the limit to the behavior
near a flat surface. To efficiently explore parameter space, we employ far-
field approximations, as well as the LB method [261, 262, 265, 304] that
accurately resolves the near-field flows. Using this approach we reproduce
the three behaviors reported in literature: orbiting around the sphere/sliding
along the wall, scattering, and hovering [152, 163, 164, 336]. Surprisingly, we
find a second type of orbiting in both our hydrodynamic approaches where
the swimmer effectively moves in the direction opposite to its bulk motion.
Backward orbiting appears for strong pusher squirmers and supersedes the
forward orbiting predicted for a point-like dipole swimmer using identical
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hydrodynamic parameters [163]. This behavior can be shown to result from
fluid recirculation in the gap between the squirmer and the surface leading
to strong forces opposing forward motion. In the limit of a flat wall, we
similarly find backward sliding.

The behavior of a squirmer near an obstacle is controlled by the strength
and sign of its dipole moment and is also sensitive to the curvature of the
obstacle. Scattering takes place for sufficiently neutral squirmers, which only
have a source dipole flow field in bulk, while hovering and orbiting require
the presence of a force-dipole contribution to the flow field. We find that
the minimal force-dipole moment that leads to orbiting scales quadratically
with the curvature for puller squirmers. Backward orbiting/sliding and
hovering can be suppressed by introducing short-ranged repulsions between
the squirmer and the surface. However, backward motion supplants forward
motion even for imposed gap sizes of one tenth of the squirmer radius.

We will focus on hydrodynamic interactions here, but our results are also
of interest to the ongoing study of motion of chemical swimmers near surfaces.
We will show that it is possible to reverse the mobility of a swimmer by
modifying its hydrodynamic force-dipole moment without changing the bulk
swim velocity. This strong response to the presence of a surface underpins
the need for more experiments performed in bulk in order to isolate the effect
of environmental changes on swimmer mobility. Our predictions provide a
stepping stone toward understanding the richer behaviors encountered when
introducing coupling between solute gradients and hydrodynamic flow fields
[154–156].

Before proceeding further, we should note that after the work presented
in this chapter was completed, Chaithanya and Thampi [167] have also
applied LB to obtain the trajectory of squirmers at a spherical obstacles
and inside spherical cavities. They find the same classes of trajectories and
further quantify them in terms of retention time, average separation between
squirmer and obstacle/cavity, tangential velocity, and scattering angle.

The remainder of this chapter is laid out as follows: Section 6.1 summarizes
the squirmer model and describes the problem considered. We also explain
how the hydrodynamics are solved to obtain trajectories of the squirmers.
In section 6.2, we give a characterization of these trajectories, before using
lubrication theory in section 6.3 to further rationalize the observations. Our
main results are presented in section 6.4, wherein we discuss the influence
of obstacle size, short-range repulsion, and higher-order hydrodynamic
moments. We conclude and present an outlook in section 6.5.
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6.1 Model and methods
In this chapter, we study the interaction of a squirmer of radius 𝑅S with a
spherical obstacle of radius 𝑅 (or a flat wall, corresponding to 𝑅 → ∞) as
illustrated in figure 6.1. The squirmer is free to move and its position is 𝒓S =
(𝑥, 𝑦)⊺ with the superscript denoting transposition, while the obstacle is fixed
at the origin. Figure 6.2 introduces the angles and distances used to describe
the squirmer’s position and orientation: 𝜑 is the angle between the squirmer’s
orientation ̂𝒆 and the tangent plane at the closest point on the obstacle’s
surface; 𝛼 is the angle between the direction of the squirmer’s velocity 𝒗
and the tangent plane; and ℎ is the size of the gap between the squirmer’s
and the obstacle’s surfaces. Initially, the squirmer is located far away
from the obstacle — we effectively take the limit to infinity — at different
distances 𝑦0 from the 𝑥-axis. ̂𝒆 points along the 𝑥-axis, corresponding to
𝜑0 = arcsin(𝑦0/𝑅S) − 90∘. For the case of the flat wall, the squirmer starts
at a large distance above the wall and oriented at different 𝜑0 against it.
Subscript zeros (0) here refer to the respective variable at time 𝑡 = 0.

In chapter 3, we described the pieces needed for a simple far-field method
that can be used to determine how the model’s parameters — like dipolarity
𝛽, angle of incidence 𝜑0, and size ratio 𝑅/𝑅S — affect the squirmer’s ability
to enter into an orbit around or be scattered at the obstacle. In the present
chapter, we take the squirmer model (section 2.4), perform a hydrodynamic
multipole decomposition (section 3.2), introduce the method of reflections to
account for the obstacle’s presence (section 3.3), use Faxén’s law to calculate
the response of the squirmer to fluid flow (section 3.4), and numerically
integrate the trajectory (section 3.5).

Neither the far-field calculations of sections 3.1 to 3.5 nor the lubrication
considerations of section 6.3 are able to accurately capture the intermediate
near-field regime. The squirmer enters this regime when it comes close to
the obstacle, and we therefore resort to the LB method [261, 262] to test
our far-field predictions. As a Navier-Stokes solver, LB excels at coupled
fluid-particle simulations and flows in complex geometries [304]. MPCD
[149, 380] would have been similarly suitable. We use the same LB method
and implementation as in chapter 5 to determine the influence of near-field
effects, the details of which are given in section 5.1. While LB correctly
incorporates near-field hydrodynamic effects, it is computationally much
more expensive than the far-field-only model. The trade-off of using a
far-field method for a problem that is potentially near-field-dependent will
be justified by section 6.4.3, where we compare some results to ones obtained
with the near-field-capable method.

The LB calculations in section 6.4.5 use a resolution of eight lattice cells
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Figure 6.1: The geometry of the system investigated: The obstacle of radius
𝑅 is located at the origin, while the squirmer of radius 𝑅S and orientation
̂𝒆 is at (𝑥, 𝑦)⊺. The size of the gap between the two objects is ℎ. For the

case of the flat wall (𝑅 → ∞), 𝑦 loses its meaning, but the other quantities
remain well-defined.
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𝛼
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Figure 6.2: The angles 𝜑 and 𝛼 are between the tangent plane at the
closest point on the obstacle’s surface and the squirmer’s orientation ̂𝒆 and
direction of motion 𝒗, respectively. The length ℎ is the size of the gap
between squirmer and obstacle.
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per squirmer radius (𝑅S = 8𝛥𝑥) as per the resolution requirement identified
in section 5.2.2. This allows for accurate capturing of flow fields down to gaps
of ℎ ≳ 𝑅S/8. The calculations further employ a periodic calculation domain
of size 𝐿 × 𝐿 × 𝐻 with 𝐿 = max(5.5𝑅, 160𝛥𝑥) and 𝐻 = max(2.6𝑅, 80𝛥𝑥).
The viscosity is set to 𝜂 = 0.8𝜌𝛥𝑥2/𝛥𝑡. The squirmer is initially located at
(max(0.3𝑅, 9𝛥𝑥), 𝑦0,𝐻/2)⊺, while the obstacle is at (𝐿/2, 𝐿/2, 𝐻/2)⊺.

6.2 Characterization
We start our analysis of the behavior of a squirmer near a spherical obstacle
using the far-field hydrodynamic theory of sections 3.3 to 3.5. To determine
the different behaviors, we vary the three free parameters in the model:
the relative obstacle size 𝑅/𝑅S, the squirmer dipolarity 𝛽, and the initial
off-axis position 𝑦0 (or equivalently, the initial incidence angle 𝜑0). We pick
𝑅/𝑅S ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500} and 𝑦0 ∈ [0, 10𝑅] spaced roughly
exponentially, 𝛽 ∈ [−30, 30] spaced linearly, and 𝑟cut/𝑅S ∈ {0, 0.01, 0.1,
0.2}.

6.2.1 Trajectories

Inspecting the resulting trajectories reveals four general classes of behav-
ior, examples of which are shown in figure 6.3a-d. (a) corresponds to a
forward orbit; (b) is a scattering trajectory; in (c) the squirmer hovers above
obstacle’s surface; (d) is a backward orbit. Figure 6.3e shows the size of
the gap between the squirmer and the obstacle over time. Here, one can
see that a decaying oscillation is modulated onto the forward orbit, while
the oscillation of the backward orbit is quite stable. These oscillations are
reminiscent of those observed in references 152 and 336. Figure 6.3fg shows
the direction of the squirmer’s orientation vector ̂𝒆 and velocity vector 𝒗,
respectively.

To identify the origin of the three different kinds of bound trajectories
more clearly, these angles are illustrated in figure 6.4: In a forward orbit, ̂𝒆
and 𝒗 are roughly parallel ( ̂𝒆 ⋅ 𝒗 > 0), while in a backward orbit they are
antiparallel ( ̂𝒆 ⋅ 𝒗 < 0). Hovering is a case where 𝒗 points almost straight
into the obstacle, so the squirmer is stuck in place. A squirmer is considered
hovering when it moves at a speed of 𝑣 < 𝑣0/100 or has |𝛼 − 𝜑| < 3∘. The
precise choice of these limits may appear arbitrary, but we found that most
orbiting trajectories exhibit angles that either much larger or much smaller.
If the trajectory is oscillatory, we average the angle over at least one orbit.
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Figure 6.3: (a-d) Trajectories for different 𝛽, leading to a forward orbit (red,
𝛽 = 22.5), scattering (green, 𝛽 = 10), a hovering state (violet, 𝛽 = −3.75)
and a backward orbit (blue, 𝛽 = −15). The solid gray circle indicates
the position of the obstacle, while the dashed gray circle indicates the
closest possible approach. (e) The surface-to-surface gap size ℎ/𝑅S between
squirmer and obstacle over time. The dashed gray lines indicate the long-
time mean gap size. (f) The angle 𝜑 between the obstacle’s surface and
the squirmer’s orientation vector over time. (g) The angle 𝛼 between the
obstacle’s surface and the squirmer’s direction of motion over time. The
dashed gray lines indicate the long-time mean angles. All calculations used
𝑅 = 20𝑅S, 𝑦0 = 0.5𝑅, 𝑟cut = 0. Time 𝑡contact is the time at which the
squirmer first made contact (ℎ = 𝑟cut) with the obstacle.
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forward
−90 < 𝜑 − 𝛼 < 90∘

̂𝒆

𝒗

backward
90 < 𝜑 − 𝛼 < 270∘

̂𝒆
𝒗

hovering
𝛼 ≈ −90∘

̂𝒆 𝒗

Figure 6.4: The bound states correspond to characteristic values of the
angles introduces in figure 6.2. Forward orbiting/sliding corresponds to 𝒗 and
̂𝒆 approximately parallel, backward orbiting/sliding to 𝒗 and ̂𝒆 approximately

antiparallel, and hovering is 𝒗 pointing approximately perpendicularly into
the obstacle. The angles illustrated here correspond to the dashed lines in
figure 6.3fg.
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Lastly, we should note that all of the above classes of trajectories are
also obtained in our LB calculations per chapter 5. However, the specific
parameters for which these behaviors are observed are different. We will
come back to this in section 6.4.5.

6.2.2 Interpreting the bound states
We examine the flow fields in figure 6.5a-c to identify the hydrodynamic
reason behind the observed bound states. Our far-field analysis relies on
Faxén’s laws, equations 3.20 and 3.21, to implicitly carry out the surface
integrals that specify the forces and torques that move and reorient the
squirmer in proximity to the boundary. However, we will argue here that
applying the intuitive arguments encountered in lubrication theory, see sec-
tion 6.3, gives insight into the origin of the various bound states. Lubrication
theory states that the dynamics of the squirmer is governed by the viscous
dissipation taking place at the point of closest approach [336]. In the far
field, one can expect a dominant contribution to the surface integral to also
come from this point, especially for small separation.

Let us now consider the flow generated by the squirmer at the location of
the boundary, without accounting for the boundary’s presence. Thus, we
are considering the ‘unmodified’ (bulk) flow field of the squirmer, evaluated
at the point of closest approach. The ‘unmodified’ fluid velocity at this
point is provided in figure 6.6, which decomposes it into components parallel
and perpendicular to the boundary. This figure also shows the separate
contributions of the various hydrodynamic modes to the ‘unmodified’ flow
field around the squirmer. Clearly, the source quadrupole moment gives rise
to the strongest parallel flow in this scenario. The perpendicular components
of the force dipole and source quadrupole essentially balance, such that
‘unmodified’ flow ‘into’ the wall is dominated by the source dipole.

The perpendicular component is associated with motion toward/away from
the boundary and is thus not of interest here. Focusing on the boundary-
parallel contribution and dominant flow of the source quadrupole, we obtain
‘unmodified’ flow fields due to this term as depicted in figure 6.5d-f. Zoom-
ins on the region of smallest separation are provided in figure 6.5g-i, where
we should again stress that we only indicate the position of the boundary,
but do not account for it in drawing the flow lines. Clearly, the zero-
velocity boundary condition is not satisfied. To achieve this condition at
the point of closest approach, we can assign a velocity to the swimmer that
is equal in magnitude, but oppositely directed. Hence, a forward-moving
(figure 6.5adg), hovering (figure 6.5beh), and backward-moving (figure 6.5cfi)
state are expected.
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(a) (b) (c)

0 5 10 15
𝑣/𝑣0

(d) (e) (f)

(g) (h) (i)

Figure 6.5: The flow around the squirmer in the (a) forward (puller), (b)
hovering (pusher), and (c) backward (pusher) configurations of figure 6.4.
The cyan arrow indicates 𝒗, while the brown one marks ̂𝒆. The gray line
indicates the position of the no-slip wall. (d-f) The same configurations, but
showing the bulk flow due to the source quadrupole moment only, where we
have not accounted for the boundary condition. (g-i) Zoom-ins on the gap
in (d-f), showing that the source quadrupole leads to a flow at the surface
(closest point) corresponding to the pink arrow. The closest point dominates
the dynamics, and to satisfy the boundary condition, the swimmer effectively
moves with 𝒗 as indicated by the cyan arrow.
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Figure 6.6: Bar graph showing the relative contributions of the hydro-
dynamic modes to the motion of the squirmer, as measured by the bulk
flow generated at the point closest to the obstacle (not accounting for this
boundary, as per the limitations discussed in section 3.3.2). The parallel
𝒖∥ and perpendicular 𝒖⟂ components of this flow velocity — corresponding
to the configurations given in figure 6.3 — are provided in the left- and
right-hand panels, respectively. The colored bars indicate the contributions
of the three hydrodynamic modes, while the net effect is provided by the
shaded area.
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6 Hydrodynamic mobility reversal of squirmers near surfaces

The above argument relies on the strong reduction that the dynamics of
the squirmer is sufficiently dominated by the point of closest approach, which
is only true in the lubrication limit. In addition, we estimate the contribution
there through the flow field around a squirmer in bulk fluid. The above
explanation should thus be seen as a means to develop some intuition for the
behavior of the squirmer, but not as a full proof. Section 6.4.3 will show that
this intuition is, however, accurate, as removal of the source quadrupole term
strongly alters the dynamics. Similarly, increasing the separation between
the squirmer and boundary sufficiently for longer-ranged hydrodynamic
modes to dominate also eliminates the backward-orbiting state. This will
be done in section 6.4.2 by varying the short-range interaction potential.

6.3 Stability analysis using lubrication theory

The flow in a small gap between two objects is formally the regime of
lubrication theory [148, 381, 382]. It assumes that the flow is dominated by
the interaction between those points where the surfaces are closest. For a
squirmer near a flat wall, Lintuvuori et al. [336] give

d𝜑
d𝑡

= 𝜔 = 3𝑣0
2𝑅S

cos 𝜑 (1 − 𝛽 sin 𝜑) ̂𝒆𝜑 + 𝒪( 1
log ℎ

𝑅S

) (6.1)

𝑣 = 0 + 𝒪( 1
log ℎ

𝑅S

) (6.2)

where ̂𝒆𝜑 is the angular unit vector in our angle convention. This means
that lateral translation vanishes but rotation remains possible.

Solving the above equation for the stationary state 𝜔 = 0 yields one stable
solution, 𝜑 = −90∘ at 𝛽 < −1. This corresponds to the hovering state of a
pusher. However, the interplay between the lubrication regime and far-field
reorientation can lead to orbiting states of both the puller and pusher [336].

Note that lubrication theory is an extreme limit where far-field hydrody-
namics become irrelevant and only one term at infinitely close separation
remains of the near-field flow. The typical gap sizes ℎ we find in this chapter
fall in between those where far-field hydrodynamics is applicable (ℎ ≳ 𝑅S)
and those where lubrication theory is valid (log(ℎ/𝑅S) ≪ −1). This neces-
sitates verification of such predictions using methods that deal with the
intermediate regime, the near field.
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6.4 Results
We are now able to use the observations of section 6.2 to classify trajectories
into distinct categories corresponding to the four archetypal trajectories
of figure 6.3. This allows us to construct state diagrams in parameter
space using the efficient far-field method of sections 3.3 to 3.5. To produce
two-dimensional 𝛽-𝑦0 diagrams, 𝑟cut and 𝑅/𝑅S are chosen to be constant
values. From the data set discussed in the previous section, one can already
obtain coarse state diagrams by performing a Voronoi construction [383] to
identify polygonal regions in the two-dimensional parameter space. Each of
these regions is associated with a (𝑦0, 𝛽) data point and contains all points
that are closer to this data point than to any other data point. The entire
region is then filled with the color assigned to the behavior observed for the
respective data point. We now refine the coarse diagram: One can identify
polygon vertices that connect polygons of different color (i.e., that lie on the
edge of a state’s region). A new calculation is then started at each of the
identified vertices. This procedure is repeated until a sufficiently smooth
diagram is obtained.

The topology of these state diagrams is roughly as follows. At 𝑦0 = 0,
only hovering states can be found because the symmetry remains unbroken.
For nonzero 𝑦0, the strongest pushers follow oscillating backward orbits.
Decreasing the squirmer strength successively leads to hovering, a forward
orbit with decaying oscillation, and another hovering state, before transition-
ing to scattering near 𝛽 = 0. Pullers of sufficient strength again enter into
forward orbits with decaying oscillation. Another region of forward orbits
is found for strong pushers near 𝑦0 = 𝑅S, but with a persistent oscillation.
In the rest of this section, we will discuss various influences on the state
diagram: (1) the obstacle size, (2) the short-range repulsion, (3) the different
hydrodynamic moments, (4) the sign of the curvature, and (5) near-field
flow.

6.4.1 Effects of obstacle size
State diagrams for a representative selection of obstacle sizes 𝑅 and constant
𝑟cut = 0 are shown in figure 6.7. At the smallest obstacle, 𝑅 = 𝑅S, one
observes that strong pushers (𝛽 < 0) enter into forward orbits. The critical
value of 𝛽 below which the squirmer is captured is constant below 𝑦0 ≈ 1.5𝑅
and decreases beyond this point. Between the orbiting and the scattering
states lies a hovering state that also extends to 𝑦0 ≈ 1.5𝑅.

As 𝑅 increases, one first observes that the 𝑦0 required to capture the
squirmer decreases. Simultaneously, the forward orbits are mostly replaced
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Figure 6.7: The influence of obstacle-squirmer size ratio: State diagrams
indicating the way the squirmer behavior depends on dipolarity 𝛽 and initial
position 𝑦0 (or equivalently, initial orientation 𝜑0) with different 𝑅 and
constant 𝑟cut = 0. Forward orbits are red, backward orbits blue, hovering is
violet and scattering is green, as indicated in the legend and used throughout.
The former three (bound) states correspond to specific relative angles of the
squirmer’s orientation and motion, which are illustrated in figure 6.4.
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with backward orbits, though a small region of forward orbiting remains,
and for 𝑅 ≈ 2𝑅S a second hovering region appears, between the backward
orbits and the hovering states (see inset in figure 6.7). This region of forward
orbits quickly shrinks as 𝑅 increases and corresponds to a set of edge-case
trajectories, e.g., ones where the squirmer moves just slightly faster than
the criterion we picked to delimit orbiting from hovering.

Further increase of 𝑅 introduces a forward orbiting state for strong pullers
(𝛽 > 0); the critical 𝛽 that separates these forward orbits from scattering is
independent of 𝑦0 for 𝑦0 < 𝑅 and decreases as 𝑅 increases. Furthermore, at
𝑦0 ≈ 𝑅, the forward orbiting state extends significantly into the scattering
state’s region. This peninsula of red in figure 6.7 appears because the
squirmer approaches the obstacle in such a way that no hydrodynamic
reorientation is required to swing into orbit.

Finally, one observes a second forward orbiting state that develops for
strong pushers. This one is near 𝑦0 ≈ 𝑅, unlike the other states, which
can be entered at 𝑦0 ≈ 0. At 𝑅 = 200, the state diagram is already almost
indistinguishable from the case for a flat wall (𝑅 → ∞). In the latter case, 𝑦0
becomes meaningless and is replaced by 𝜑0, which is a well-defined quantity
even for finite radii, but cannot describe 𝑦0 > 𝑅.

In figure 6.8, we have extracted the position of the critical values of 𝛽 for
the transitions observed in figure 6.7. The transitions from scattering to
hovering and from hovering to backward orbiting are nearly independent
of 𝛽. The transition between scattering and forward orbiting happens at
𝛽 ∝ 𝑅−2 for pullers at 𝑦0 ≈ 0 and at 𝛽 ∝ −𝑅−1 for pushers at 𝑦0 ≈ 𝑅.
This scaling disagrees with Spagnolie et al.’s prediction [163] for the pusher,
𝛽 ∝ −𝑅−1/2, but as discussed in section 6.4.3, the deviation is fully explained
by a modeling difference.

Figure 6.11ab shows the swimmer’s speed 𝒗 ⋅ ̂𝒆𝜑 tangential to the obsta-
cle’s surface for the different size ratios and dipolarities. Forward orbits
correspond to 𝒗 ⋅ ̂𝒆𝜑 > 0 and backwards orbits to 𝒗 ⋅ ̂𝒆𝜑 < 0. The squirmer
increases its speed with increasing |𝛽| at constant 𝑅S and speeds up slightly
with increasing 𝑅S at constant 𝛽. The critical dipolarity corresponding to a
specific size ratio as displayed in Figure 6.7 is also shown, with the velocity
of an unbound trajectory drawn as 𝑣 = 𝑣0 and the velocity of a hovering
state 𝑣 ≈ 0. Here it is evident that the speed of the squirmer does not
change when making a state transition, e.g. by varying 𝛽 from slightly above
to slightly below its critical value. This is in line with the experimental
findings of reference 127, where a catalytic swimmer orbits a cylindrical post
at almost the same speed as it swims in bulk.
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Figure 6.8: From figure 6.7 we can extract critical values of 𝛽 that mark
the transition from one state to another. Blue is the transition between
backward orbiting (b) and hovering (h), violet is the transition between
hovering and scattering (s), and red is the transition between hovering and
forward orbiting (f), all near 𝑦0 = 0. Green is the transition from forward
orbiting to scattering near 𝑦0 = 𝑅. The error bars are comparable to the
symbol size and result from the finite size of the regions produced by the
Voronoi construction and also from the slightly diffuse transition regions
(see the inset of figure 6.7).
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6.4.2 Effects of short-range repulsion
Thus far, we have assumed 𝑟cut = 0, letting the squirmer and obstacle
touch. However, realistic swimmers typically repel each other and from
obstacles at short distances [336], e.g., due to electrostatics [237], phoretic
interactions [156], or near-field hydrodynamics [237]. To study this effect,
we pick 𝑅 = 20𝑅S, where the state diagram contains all the features seen at
other obstacle radii. We then construct iteratively refined Voronoi diagrams
for 𝑟cut/𝑅S ∈ {0, 0.01, 0.1, 0.2} in figure 6.9.

Making the step from 𝑟cut = 0 to 𝑟cut = 0.01𝑅S introduces an additional
length scale into the problem. Despite the small absolute magnitude of
this 𝑟cut, this leads to the appearance of the transition from scattering to a
forward orbit for pushers near 𝑦0 = 𝑅. While one cannot see this forward
orbiting state in the diagram for 𝑟cut = 0, it is expected there at 𝛽 ≈ −40 per
figure 6.8 and visible in figure 6.7 for larger 𝑅. Increasing 𝑟cut further moves
both transitions between scattering and forward orbits to smaller |𝛽|. At
𝑟cut = 0.1𝑅S, the hovering state has vanished completely. At 𝑟cut = 0.2𝑅S,
the backward orbiting state has vanished too and is replaced by forward
orbits, which have now extended to smaller 𝑦0.

The disappearance of the hovering state at relatively moderate short-range
repulsion is again in line with our attribution of the observations to the
quadrupole term, which at small 𝛽 can only dominate for the smallest gap
sizes. Even 𝑟cut = 0.2𝑅S is sometimes a realistic model for short-range
repulsion, for example for chemical nanoswimmers with extended electric
double layers [34, 384]. This could explain why backward orbits are not
encountered more commonly in experiment and theory.

6.4.3 Effects of higher-order hydrodynamic modes
In the previous section, we have already observed that backward orbits and
hovering are very much dependent on near-field interactions. This even goes
to the extent that backward orbits are completely suppressed if squirmer
and obstacle are kept sufficiently far apart. The results suggest that one of
the higher hydrodynamic modes in equation 2.45 causes this behavior, since
they dominate the flow only on short distances. We perform two additional
far-field calculations to quantify this effect: (i) one that drops the source
quadrupole from equations 3.10, 3.17 and 3.18 but is otherwise identical to
the method used for section 6.4.1, and (ii) one that furthermore drops the
squirmer’s source dipole, leaving only the force dipole flow and moving the
squirmer directly via 𝑣0.

Again, we pick 𝑅 = 20𝑅S and 𝑟cut = 0 and obtain the state diagram in
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Figure 6.9: The influence of non-hydrodynamic interactions: State diagrams
of the squirmer-obstacle interaction with color coding as in figure 6.7. The
dipolarity 𝛽 and initial position 𝑦0 (or equivalently, initial orientation 𝜑0) are
varied at constant 𝑅 = 20𝑅S. From left to right we increase the short-range
repulsion, 𝑟cut/𝑅S = 0, 0.01, 0.1, and 0.2.
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Figure 6.10: The influence of higher-order hydrodynamic moments: State
diagrams of the squirmer-obstacle interaction with color coding as in fig-
ure 6.7. The obstacle radius is maintained at 𝑅 = 20𝑅S, while the dipolarity
𝛽 and initial position 𝑦0 (or equivalently, initial orientation 𝜑0) are varied.
From left to right, different hydrodynamic models are considered: squirmer,
force and source dipole, and force dipole. The gray dashed lines in the right
panel indicate the position of the transition as predicted by reference 163.
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figure 6.10. One can see that the lack of a quadrupole term replaces the
backward orbits and hovering states with forward orbits. It also converts
the forward orbits into a hovering state down to much smaller 𝛽. Further
dropping the source dipole allows for direct comparison with Spagnolie et al.
[163], who predict the position of the transition: They suggest that pushers
orbit for 𝛽 < −√1024𝑅S/81𝑅 as long as 𝑦0 < 0.86𝛽2/5(𝑅/𝑅S)1/5 + 𝑅/𝑅S,
while they see pullers hovering for 𝛽 > 32𝑅S/9𝑅. We reproduce these
predictions quite well as seen in figure 6.10. The remaining deviation is
consistent with reference 163, where the critical |𝛽| is found to be slightly
larger than predicted. Furthermore there is a slight difference in modeling,
namely that Spagnolie et al. do not include the swimmer’s finite 𝑅S in
equation 3.20. We do not show a separate state diagram for a swimmer
with only a source dipole since this case simply corresponds to 𝛽 = 0 for a
squirmer or a dipole swimmer, where only scattering is observed.

Figure 6.11c-f shows the tangential speed of the two types of dipole
swimmers. The effects of dipolarity and size ratio are less pronounced than
for the squirmer: the pullers’ only bound states are hovering, where 𝑣 ≈ 0
is observed, and the pushers’ only bound states are forward orbits. The
dipole swimmer speeds up slightly with increasing |𝛽| at constant 𝑅S and
slows down with increasing 𝑅S at constant 𝛽. The latter is the opposite
of the behavior seen for the squirmer. The force dipole swimmer slows
down with increasing 𝛽, which is in opposition to both the squirmer and the
dipole, but happens to an even lesser extent than for the dipole. Reference
127 observes a spherical, pusher-type, catalytic swimmer at a cylindrical
post in experiment and finds the velocity independent of post diameter.
This is consistent with figure 6.11 under the assumption that there is no
quadrupolar contribution to the catalytic swimmer. The tangential speeds
also align with the relative contributions of the hydrodynamic multipoles in
figure 6.6: the force dipole is the weakest propellant at the obstacle, followed
by the source dipole, and the source quadrupole. The source quadrupole’s
contribution is the only one that switches sign, so only the squirmer can
exhibit backward motion.

6.4.4 Swimming inside a cavity
We can shed further light on the role of curvature by flipping its sign.
Section 6.4.1’s study of a squirmer near a spherical obstacle corresponds
to swimming at a positively-curved surface, whereas swimming inside a
spherical cavity corresponds to a swimming at a negatively-curved surface.
State diagrams for a representative selection of cavity sizes 𝑅 and constant
𝑟cut = 0 are shown in figure 6.12. Note that forward orbits can no longer be
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Figure 6.11: The influence of obstacle size and dipolarity on the velocity
of the (ab) squirmer, (cd) force and source dipole, and (ef) force dipole:
the average speed tangential to the obstacle’s surface for bound states is
shown, where the colors correspond to the dipolarity 𝛽. The forward orbits
have 𝒗 ⋅ ̂𝒆𝜑 > 0, backward orbits < 0, and hovering ≈ 0. The horizontal
lines indicate the critical values for state transitions from figure 6.8 for the
squirmer and the corresponding quantities for the other swimmers.
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Figure 6.12: The influence of obstacle-squirmer size ratio on swimming
inside a spherical cavity: State diagrams with 𝛽, 𝑦0 (or 𝜑0), and 𝑅 varied
in the same way as in figure 6.7. The spectrum of states from scattering
to forward orbits is represented by the colors green, yellow, orange, and
red (with an increasing gap size oscillation amplitude in this order), while
backward orbits are blue and hovering is violet.
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6.4 Results

fully distinguished from scattering events: a squirmer that leaves its bound
state will move in a straight line only until it reaches the cavity surface
again, where it has another chance to enter a bound state. To classify this
spectrum of states, we consider the amplitude of the relative gap size ℎ/𝑅
over time. ℎ/𝑅 ≈ 0 is expected to correspond to the forward orbits, and
we introduce additional colors in the state diagram that each correspond to
0.1ℎ/𝑅 increments.

At the greatest cavity size, the result for the flat wall from figure 6.7 is
largely reproduced: Sufficiently strong pushers enter into backward orbits
unless they approach nearly parallel to the surface, in which case they
enter into a forward orbit. With decreasing strength, the transition region
of hovering and a scattering region is recovered. Orbits are found for a
wider range of parameters for the cavity than for the obstacle due to a
self-stabilization effect discussed in the next paragraph. For pullers, forward
orbiting is found unconditionally, while in the case of the flat wall 𝛽 ≳ 6
was required to enter into an orbit. The transition region of increasing gap
size oscillations is small enough to be barely visible in the state diagram.
As 𝑅 is decreased, the critical 𝛽 for pushers to enter into forward orbits
near 𝑦0 ≈ 𝑅 increases (even crossing the 𝛽 = 0 line for the smallest cavity)
and, once it has surpassed the critical 𝛽 between hovering and backward
orbiting near 𝑦0 ≈ 0, it becomes independent of 𝑦0. Eventually, a lower
critical 𝛽 develops for the pusher below which the orbits become increasingly
oscillatory. Simultaneously, the hovering state becomes increasingly diffuse
and indistinguishable from slow forward orbits. A critical 𝛽 below which
pullers cannot orbit forward appears for 𝑅 ≲ 50𝑅S and increases with
increasing curvature. At the same time, the transition region of oscillatory
forward orbits (between the forward orbiting state and the scattering state)
becomes more prominent.

The expansion of the regions where forward orbits are found inside the
spherical cavity (figure 6.12) compared to outside the spherical obstacle
(figure 6.7) can be explained by a self-stabilization effect: At the obstacle,
any perturbation that takes the swimmer off its bound trajectory will cause
the swimmer to move away. Inside the cavity, however, the swimmer will
eventually encounter the surface again after swimming in a straight line. In
this sense, the flat wall behaves similar to the obstacle and not the cavity
as there is no chance for another encounter with the wall after a sufficiently
strong perturbation. The self-stabilization effect corresponds to only a slight
increase in gap size oscillation amplitude, so it is not visible in the color
scheme of figure 6.12.

The dependency on higher-order hydrodynamic moments that we inves-
tigated for a spherical obstacle in section 6.4.3 can also be studied inside
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Figure 6.13: The influence of higher-order hydrodynamic moments on
swimming inside a spherical cavity: State diagrams of the squirmer-obstacle
interaction with color coding as in figure 6.12. The obstacle radius is
maintained at 𝑅 = 20𝑅S, while the dipolarity 𝛽 and initial position 𝑦0 (or
equivalently, initial orientation 𝜑0) are varied. From left to right, different
hydrodynamic models are considered: squirmer, force and source dipole,
and force dipole.
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6.5 Summary

the spherical cavity. The resulting figure 6.13 however leads to the same
conclusion as before: the richness of the observed behavior is due to the
quadrupole term, with dipole pushers orbiting and pullers hovering and
only a small region near 𝛽 = 0 exhibiting scattering trajectories. For the
force-dipole swimmers, no scattering is observed. In both cases, the hovering
region is rather diffuse and indistinguishable from a slow forward orbit.

6.4.5 Accounting for the near field
Finally, we come to the results obtained using our LB calculations, with
the same method as in chapter 5. These are computationally much more
involved, and we were therefore only able to sample a few points to verify
the general trends of our far-field prediction. Initial simulations for this were
performed in reference 346. We restrict ourselves to 𝑅/𝑅S ∈ {2, 5, 20} and a
few values of 𝛽 and 𝑦0. The state diagram in figure 6.14 shows that scattering
is generally more prevalent than in the previous far-field-only calculations.
Backward orbits are still observed, but their critical dipolarity increases more
rapidly with decreasing curvature. Forward orbits, which in the far field
are primarily predicted for pullers, are now found in the case of sufficiently
strong pushers when the obstacle size is large enough. Hovering states are
possible for both pushers and pullers of sufficient strength, whenever the
curvature is low.

These observations confirm that all four states found in the far-field
model are indeed allowed by the near-field flow. Most notably, backward
orbits of strong pushers appear in both far-field and LB models. However,
agreement with the far-field model and with lubrication theory is only
obtained to a certain degree. This is expected due to the difference in
hydrodynamic modeling, but the choice of Weeks-Chandler-Andersen (WCA)
as in equation 5.1 as opposed to hard-core repulsion might play an additional
role. Literature also uses a variety of repulsion potentials, including ones
softer than WCA [164], and hard-core repulsion [163]. The observed rapid
decrease of 𝛽 with 𝑅 for backward orbiting places the backward sliding state
(𝑅 → ∞) outside the capabilities of our LB calculations.

6.5 Summary
We have employed three hydrodynamic methods to investigate the behavior
of a squirmer near a spherical obstacle or a flat wall or inside a spherical cavity.
Our primary results are derived using a simple far-field approximation, which
lends itself to an efficient exploration of parameter space. Depending on
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Figure 6.14: The influence of near-field hydrodynamics: State diagrams
obtained via the LB method indicate the interaction between the squirmer
and obstacle as a function of dipolarity 𝛽 and initial position 𝑦0 (or equiva-
lently, initial orientation 𝜑0); the color coding is as in figure 6.7. From left
to right three values of 𝑅 = 2, 5, and 20𝑅S are considered. Compare to
figure 6.7 to see the differences caused by the near field.
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6.5 Summary

the squirmer dipolarity, incidence angle, obstacle curvature, and short-range
repulsion, this revealed four classes of trajectories: scattering, forward orbits,
backward orbits, and hovering. Three of these trajectory classes have been
previously reported, but the backward orbits constitute a new class that
appears only for strong pushers.

Using the far-field approximation allowed us to construct state diagrams
that cover the entire parameter space. We obtained all four classes for
reasonable dipolarity parameters whenever the squirmer size is less than
roughly half the size of the obstacle. Comparison to calculations that
exclude the squirmer’s quadrupole term reconcile our results with those
of Spagnolie et al. [163]. This clearly attributes hovering and backward
orbiting to the quadrupole. Thus, accounting for the finite size of the
swimmer in the hydrodynamic multipole expansion introduces a richer
behavior. Inside a cavity, orbits are found for a wider range of parameters
due to self-stabilization effects not present at the obstacle or wall.

We also computed trajectories for several parameter sets using the LB
method to investigate whether the reported far-field behaviors persist even
when taking into account near-field details. While the exact positions of
the transition between classes are altered, the qualitative behavior stays the
same. Most importantly, we reproduce the predicted backward orbiting for
the strong pushers in these calculations, showing that this effect is not an
artifact of our approximation.

Our results indicate a mechanism of mobility reversal with respect to the
bulk that is exclusively due to the hydrodynamic interaction of a swimmer
with a surface. However, biological or artificial swimmers may additionally
interact chemically or electrostatically with surfaces. Simple mappings of
chemical swimmers onto a squirmer [154–156] are known not to qualitatively
capture their behavior at small separation [155, 156]. Thus, such effects need
to be accounted for in unison with the hydrodynamics [366, 378, 385]. The
present theory and LB calculations provide a stepping stone toward analysis
of (electro)chemical contributions to the orbiting of artificial swimmers.
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7 An extensible lattice Boltzmann
method for viscoelastic flows

Recent years have seen a surge of interest in the study of viscoelastic flu-
ids, due to increased experimental understanding and several intriguing
results that were obtained in these media. In particular, microswimmers
in viscoelastic fluids show a richer set of behaviors than possible in simple
(Newtonian) fluids, which include: the self-propulsion of a microswimmer
through time-reversible actuation [77, 78, 386, 387], which is forbidden in a
Newtonian fluid at low Reynolds number by Purcell’s scallop theorem [19]
as described in section 1.1.2; the self-propulsion of a spatially symmetric
microswimmer through spontaneous symmetry breaking [39]; enhanced ro-
tational diffusion of thermophoretic Janus swimmers, due to time-delayed
translation-rotation coupling in polymer suspensions [388]; a peak in the
motility of Escherichia coli bacteria as a function of the polymer concentra-
tion and thus complexity of the fluid [130]; and a fundamental change in
the way a microorganism propels in response to the rheology of the medium
[389]. With the majority of industrially and biologically relevant fluids being
complex fluids with internal structure and a non-Newtonian rheology [390,
391], many more such surprises lie ahead of us.

This has motivated the development of a wide range of theoretical and
numerical methods. However, solving the associated hydrodynamic problem
remains an open challenge, both in terms of efficiency and in defining the
relevant constitutive equations. Much of the numerical work has focused on
well-established, albeit basic, models of complex media, such as polymeric
fluids described by Oldroyd-B [193] and FENE-P [197, 392]. Examples of
such solvers applied to microfluidic problems include the finite volume (FV)
method [393, 394], the finite element method (FEM) [331, 395], multi-
particle collision dynamics (MPCD) [396, 397], dissipative particle dynamics
(DPD) [398], the immersed boundary method (IBM) [389], smoothed-particle
hydrodynamics (SPH) [399, 400], as well as explicit-polymer models based on
Stokesian dynamics (SD) [401], lattice Boltzmann (LB) [203], and MPCD
[169]. The open problem is how to simulate a fluid with a well-defined
rheological response, while also allowing for the incorporation of colloidal
particles. LB methods [261, 262, 265] hold particular promise to achieve this
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7 An extensible lattice Boltzmann method for viscoelastic flows

goal due to their computational efficiency [9] and facile boundary [278] and
particle coupling [266, 302–305], as has been demonstrated in Newtonian
media. A wide variety of viscoelastic LB schemes have been conceived over
the years [285, 286, 402–413]. However, despite this long history, which
we will summarize in section 7.1.1, there remain multiple unresolved issues,
especially with regard to boundary conditions.

In this chapter, we address the issues of simulating a viscoelastic fluid using
LB with arbitrarily-shaped, moving boundaries. Our method is inspired by
the Su et al. [285] algorithm for an Oldroyd-B fluid, which we re-derive as an
FV scheme similar to that of Oliveira et al. [287]. This ensures momentum
conservation and allows us to introduce a boundary coupling that makes
no assumptions on the stress at the boundary [292]. Compared to the LB
schemes described in the literature, further advantages include low memory
usage and the absence of unphysical diffusion terms. After referring to
sections 2.1.3, 2.1.5 and 2.5 for the relevant theory and laying out our
numerical method in section 7.1, we benchmark our algorithm using several
standard rheological tests: time-dependence of the planar Poiseuille flow in
section 7.2.1, steady shear flow in section 7.2.2, the instabilities in lid-driven-
cavity flow in section 7.2.3, and extensional flow in the four-roll mill in
section 7.2.4. Next, we examine the effect of the coupling of translation and
rotation on the sedimentation of a sphere in section 7.2.5, showing that we
reproduce the shear-induced speed-up. We do the same for two connected
spheres in section 7.2.6 and a squirmer in section 7.2.7. We discuss our
findings and conclude with an outlook on future applications in section 7.3.

7.1 Model and methods
This chapter considers Oldroyd-B flow in various geometries with different
boundary conditions, as well as rigid bodies in such a fluid. Just as the
equations in sections 2.1.3 and 2.1.5 are split into a Newtonian part and a
viscoelastic constitutive equation, here in the form of Oldroyd-B, we employ
two separate numerical methods. The former is solved via LB (section 4.1),
while the latter uses the FV method (section 4.2.3). Section 7.1.1 gives a
brief overview of two decades’ worth of viscoelastic LB literature to justify
this specific combination of methods. Section 7.1.2 explains how code
generation techniques can be used to create a method and implementation
that are independent of the specific choice of constitutive equation. The
moving boundary scheme for LB and FVs is given in sections 4.4.1 and 4.4.3,
respectively. It is also combined with the squirmer model of section 2.4 as
described in section 5.1.
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7.1 Model and methods

7.1.1 Background on viscoelastic lattice Boltzmann
As early as 1997, Giraud et al. [402, 403] used LB to compute the response
of the Jeffreys fluid. This was followed up by Ispolatov and Grant [404], who
employed LB to solve a linear Maxwell model, by implementing the elastic-
stress contribution as a body force onto their fluid. Similar approaches were
followed by Li and Fang [405] and Frantziskonis [406]. Later, Frank and Li
[407, 408] went beyond the body-force coupling and introduced the effect of
elastic stress directly into the second moment of the equilibrium distribution,
an approach which has recently been revisited by Dellar [409]. Other coupling
forms were considered by Onishi et al. [410] and Osmanlic and Körner [411],
who employ a Fokker-Planck-like evolution of microscopic dumbbell-shaped
polymers in a viscous fluid. This type of system is theoretically known to
result in a viscoelastic response that resembles Oldroyd-B [414]. More direct
approaches to reproducing Oldroyd-B were followed by Su et al. [285] and
Karra [412], who solved the stress evolution equation for the corresponding
constitutive relation directly using the LB fluid velocity as input to a finite
difference scheme. Malaspinas et al. [286] and Su et al. [413] similarly
used an LB scheme as a generic differential equation solver and treated
the viscoelastic stress tensor component-wise, for both the Oldroyd-B and
FENE-P constitutive relations.

Phillips and Roberts [415] provide a more in-depth review of the cited
methods for viscoelastic fluids, as well as LB methods for generalized New-
tonian fluids without viscoelastic memory. The latter include shear-thinning
and shear-thickening fluids using a variety of shear-dependent viscosity
models such as power-law [416–422], Cross [423], Carreau [421], or Bingham
[424]; as well as specialized models for blood such as Casson [425, 426],
Carreau-Yasuda [426, 427], or K-L [426]. For a discussion of LB methods
that deal with viscoelastic behavior of active fluids [186, 188], see the review
by Carenza et al. [428].

The viscoelastic LB schemes listed above are not applied to problems with
boundaries [402, 407], do not require explicit treatment of the stress [404–406,
408], or use bounce-back rules to impose specific boundary conditions on
the stress [403, 409]. Some extrapolate stress onto boundaries to allow for
cases where no analytic expression exists [286, 413], while others can only be
applied to systems for which the stress at the boundary is known beforehand
[285]. As suggested by the large number of ways to treat stress at boundaries,
and in spite of the significant development of LB-based viscoelastic solvers
over the past two decades, incorporation of moving objects and handling
of complex boundary geometries remains problematic. In the following, we
build upon this body of knowledge and introduce a general method capable
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of handling complex and moving boundaries. By doing so, we overcome the
limitations of previous viscoelastic LB algorithms.

7.1.2 Implementation
The Python module pystencils [314] can be used to automatically generate
code for grid-based algorithms, either for use in Python or for waLBerla, see
section 4.5. We have extended it with a generator for FV discretizations that
automatically derives the expressions in section 4.2.3 when provided with
the Oldroyd-B equations 2.18 to 2.20. By instead supplying, for example,
the FENE-P constitutive equation [197], it would be possible to simulate
that model without writing any additional code.

There are several other fluid dynamics software packages that allow the
user to provide such equations and automatically derive discretizations for
them, e.g. Dedalus [429] or OpenFOAM [430]. The combination of pystencils
and waLBerla, however, is unique in that it allows for arbitrarily-shaped
boundary conditions that change over time, which can be put to use for the
moving boundaries of section 4.4. We forgo waLBerla for the two-dimensional
simulations, since they do not require rigid-body dynamics or parallelization,
and run these simulations completely from Python. In this case, LB is
provided by the lbmpy module [315], also described in section 4.5.

7.2 Validation and results
In this section, we solve multiple rheological benchmark systems to verify
the correctness of our algorithm and implementation by comparing against
results from literature. We then simulate systems involving moving boundary
conditions and translation-rotation coupling in order to demonstrate the
strength of the method.

7.2.1 Time-dependent Poiseuille flow
The planar Poiseuille geometry consists of an infinitely long channel of width
𝐿, through which flow is driven by a homogeneous force along the channel,
𝑭 = 𝐹𝑥 ̂𝒆𝑥. The channel walls impose a no-slip condition 𝒖((𝑥, 0)⊺, 𝑡) =
𝒖((𝑥, 𝐿)⊺, 𝑡) = 0, while the infinite length can be achieved via periodic
boundary conditions in 𝑦-direction. This setup is illustrated in figure 7.1
and results in a parabolic steady-state flow profile. Starting this flow in a
resting Newtonian fluid causes the steady-state flow to be approached in a
monotonous fashion. In a viscoelastic medium, however, the flow velocity
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Figure 7.1: Geometry of the planar Poiseuille flow system. A force 𝑭 is
applied to a fluid in a periodic channel of width 𝐿, which leads to a parabolic
profile across the channel for the flow velocity 𝑢𝑥 along the channel. The
dashed line indicates where the flow velocity is measured for further analysis.
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can overshoot its steady-state value and then decay to it on a time scale
of 𝜆p. This is due to the storage of energy in the elastic medium, which is
released back into the fluid on the time scale 𝜆p. Reference 431 provides an
analytic expression for the time-dependent flow profile in a liquid B’ model:

𝑢𝑥((𝑥, 𝑦)⊺, 𝑡) ∝ 𝑦
ℎ

− 𝑦2

ℎ2 − 8
∞
∑
𝑛=1

sin(𝑛𝜋
ℎ (2𝑛 − 1))

(2𝑛 − 1)3 𝜋3
exp(−𝛼𝑛𝑡

2𝜆p
)𝐺𝑛 ( 𝑡

𝜆p
)

(7.1)
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,
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(2𝑛 − 1)2𝜋2,
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(2𝑛 − 1)2𝜋2∣,

𝛾𝑛 = 1 − (1 + 𝜉)Wi
Re

(2𝑛 − 1)2𝜋2.

The liquid B’ model model has been shown to be equivalent to Oldroyd-B
[432, 433].

We choose the channel width 𝐿 = 28𝛥𝑥, applied force 𝐹𝑥 = 10−5𝜌𝛥𝑥4/
𝛥𝑡2, Newtonian viscosity 𝜂n = 𝜌𝛥𝑥2/𝛥𝑡 − 𝜂p, polymer viscosity ratios
𝜉 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, and polymer relaxation times 𝜆p/𝛥𝑡 ∈ {1000,
3000, 5000, 7000, 9000} for our test simulations. This corresponds to a
Reynolds number of

Re = 𝜌𝑢𝑥((𝑥, 𝐿/2)⊺,∞)𝐿
𝜂

= 𝜌𝐹𝑥𝐿3

8𝜂2 = 0.03, (7.2)

which is well within the low-Reynolds regime we are interested in. The
Weissenberg number is

Wi =
𝑢𝑥((𝑥, 𝐿/2)⊺,∞)𝜆p

𝐿
=

𝐹𝑥𝐿𝜆p

8𝜂
∈ [0.04, 0.32] . (7.3)

Figure 7.2 shows the flow velocity 𝑢𝑥((𝑥, 𝐿/2)⊺, 𝑡) over time for various
polymer viscosity ratios 𝜉 at constant polymer relaxation time 𝜆p = 3000𝛥𝑡.
One can see that the magnitude of the overshoot increases with 𝜉. For the
largest values of 𝜉, the flow can even decay to its final speed in an oscillatory
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Figure 7.2: Velocity at the center of a planar Poiseuille channel over time
for varying viscosity ratios 𝜉 and polymer relaxation time 𝜆p = 3000𝛥𝑡.
Symbols are numerical calculations, and lines show the analytic prediction
by reference 431. The solid lines use 𝐿 from the input parameters, whereas
the dashed lines allow it to be a free fit parameter.
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Figure 7.3: Velocity at the center of a planar Poiseuille channel over
time for viscosity ratio 𝜉 = 0.3 and varying polymer relaxation times 𝜆p.
Symbols are numerical calculations, and lines show the analytic prediction
by reference 431. The solid lines use 𝐿 from the input parameters, whereas
the dashed lines allow it to be a free fit parameter.
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fashion. Figure 7.3 keeps 𝜉 = 0.3 constant and varies 𝜆p. Here it is clear
that the magnitude of the overshoot increases with 𝜆p, which is also the
characteristic decay time of the overshoot.

Figures 7.2 and 7.3 additionally show the analytic expression, equation 7.1,
for comparison. The agreement with the analytics can be improved to around
1% in all cases if 𝐿 is used as a fit parameter. This is justified by the fact
that the boundary position in LB is not guaranteed to be exactly at the edge
of the cell [434] and that the extrapolation of equation 4.32 introduces an
error for the FV method. The resulting 𝐿 differs from the input parameter
by ±0.6 cells, or ±0.3 per boundary, well within the range expected for
regular LB.

7.2.2 Steady shear flow
The planar Couette geometry is similar to that of section 7.2.1, but replaces
the applied force with a velocity boundary condition of 𝒖((𝑥, 𝐿)⊺, 𝑡) = 𝑢0 ̂𝒆𝑥
on one of the planes, as illustrated in figure 7.4. This relative motion leads
to a linear steady-state velocity profile across the channel. The first normal
stress difference,

𝑁1 = 𝜏𝑥𝑥 − 𝜏𝑦𝑦 = 2𝜂p𝜆p
𝑢2

0
𝐿2 , (7.4)

is expected to be constant over the entire channel, as obtained by solving
equation 2.17 with the given velocity profile. We choose the channel width
𝐿 = 28𝛥𝑥, the applied velocity 𝑢0 = 10−3𝛥𝑥/𝛥𝑡, Newtonian viscosity
𝜂n = 𝜌𝛥𝑥2/𝛥𝑡 − 𝜂p, polymer viscosity ratios 𝜉 ∈ {0.2, 0.4, 0.6, 0.8}, and
polymer relaxation times 𝜆p/𝛥𝑡 ∈ [1000, 20000] for our test simulations.
They are run until sufficiently converged, which we find to be the case
at 𝑡 = 10𝜆p. We find that 𝑁1 agrees with the prediction to within 0.2%
across all parameters. Appreciable deviations (∼ 5%) are only seen in the
cells directly at the boundaries, where this is expected due to the stress
extrapolation by equation 4.32.

7.2.3 Lid-driven cavity
The lid-driven cavity consists of a square flow cell of edge length 𝐿, with
no-slip boundaries on three sides and a constant velocity boundary condition
of 𝒖((𝑥, 𝐿)⊺, 𝑡) = 𝑢0 ̂𝒆𝑥 on the top side. This is depicted in figure 7.5, which
also illustrates the shape of the resulting flow: a primary vortex develops
near the top center of the flow cell and secondary vortices arise in the lower
corners. The exact position of the center of the primary vortex, as well as
the position 𝑦 of the minimum of 𝑢𝑥((𝐿/2, 𝑦)⊺,∞) and the positions 𝑥 of the
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𝒖0

𝐿 𝑦
𝑥

0 𝑢0
𝑢𝑥0

𝑦
𝐿

Figure 7.4: Geometry of the planar Couette flow system. A velocity
boundary condition of 𝒖0 is applied to one side of a fluid in a periodic
channel of width 𝐿, which leads to a linear profile across the channel for the
flow velocity 𝑢𝑥 along the channel.

𝒖0

0 𝐿
𝑥

0

𝐿

𝑦

𝑢

Figure 7.5: Geometry of the lid-driven cavity system. A square flow cell of
size 𝐿 has no-slip boundaries on three sides and a constant-velocity boundary
condition of 𝒖0 along the fourth. The resulting flow develops a primary
vortex near the top middle of the cell. Along the dashed lines, flow velocity
minima and maxima are found at the red crosses. The blue arrow indicates
how the vortex center moves as Wi is increased from 0 to 1.
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minimum and maximum of 𝑢𝑦((𝑥, 𝐿/2)⊺,∞) vary with the flow parameters
and have been extensively studied in literature [435–439], making them
well-suited for comparison in the following.

We choose width and height 𝐿 = 194𝛥𝑥 for the flow cell, Newtonian
viscosity 𝜂n = 𝜌𝛥𝑥2/𝛥𝑡 − 𝜂p, applied velocity 𝑢0 = 10−4𝛥𝑥/𝛥𝑡, polymer
viscosity ratio 𝜉 = 0.5, and polymer relaxation times 𝜆p such that Weissen-
berg numbers Wi ∈ [0, 1] are obtained. For Wi = 0, 𝜉 → 0 is also used. The
Weissenberg and Deborah numbers are [436]

Wi = De =
𝜆p𝑢0

𝐿
, (7.5)

coinciding due to the unit aspect ratio of the cell. The Reynolds number is
given by

Re = 𝜌𝑢0𝐿
𝜂

= 0.02, (7.6)

again placing us in the low-Reynolds regime.
For numerical reasons, the velocity boundary condition is not applied as

given above. Instead, a regularization is used to remove the infinite flow
divergence in the top corners. A common choice is

𝒖((𝑥, 𝐿)⊺, 𝑡) = 16𝑢0 ( 𝑥
𝐿

)
2
(1 − 𝑥

𝐿
)

2
̂𝒆𝑥. (7.7)

This regularization leaves the qualitative flow features untouched, but
thwarts quantitative comparison with the unregularized simulations of refer-
ence 435. The same regularization is employed by references 436–439 and
shall be used in the comparison below.

Figure 7.6 shows the positions of the primary vortex and the flow velocity
extrema in our simulations. Error bars correspond to the size of a cell plus
the potential deviation of the true boundary position from the prescribed
boundary position. One can see that the general trend from references
436–439 is recovered semi-quantitatively, with the exception of the nonlinear
deviation of the 𝑥-component of the vortex center. Results vary significantly
between these references, so that a quantitative comparison is not drawn.
However, in view of this, the result in figure 7.6 gives confidence in our
method’s accuracy. The speed with which our results were obtained, as well
as the ability to refine these significantly, provide opportunities for future
benchmarking.

The flow velocity at the points of interest is shown in figure 7.7. Values
differ between references 436–439 by factors of up to 2, so we only plot the
comparison to reference 439. This reference has matching flow velocities at
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Figure 7.6: Positions of the primary vortex and flow extrema in the lid-
driven cavity. Colors refer to the different points. Symbols are our results,
while the hatched areas indicates the range covered by the numerical results
from references 436–439.
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Figure 7.7: Velocity of the flow extrema in the lid-driven cavity. Colors
refer to the different points. Symbols are our results, while the line refers to
numerical results from reference 439. The square symbols indicate Newtonian
simulations (𝜉 → 0) and match results from reference 436, while the others
are viscoelastic (𝜉 = 0.5).
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Wi → 0 and exhibits the same trend of decreasing velocity magnitudes as
our results. The vortex is observed to move toward the top left as Wi is
increased. The minimum of 𝑢𝑥 moves down slightly, while both the minimum
and the maximum of 𝑢𝑦 move toward the left. The deviations from the
results in literature are expected as the system is very sensitive to resolution,
especially at larger Wi. Our resolution was chosen such that the results had
sufficiently converged.

We also performed one simulation at 𝜉 → 0, the Newtonian case, and
observe that this yields a different velocity than Wi → 0 at constant 𝜉 = 0.5.
The velocity obtained in the former way agrees with that reported by
reference 436 to within 1%. The latter way corresponds to the case of
instantaneous polymer relaxation, but not vanishing viscoelasticity.

7.2.4 Four-roll mill
The four-roll mill consists of a square cell with length 𝐿 and periodic
boundary conditions. A force field of

𝑭(𝒓, 𝑡) = 8𝜋2𝜂n𝑢0
𝐿2

⎛⎜
⎝

sin( 2𝜋
𝐿 𝑥) cos( 2𝜋

𝐿 𝑦)

cos( 2𝜋
𝐿 𝑥) sin( 2𝜋

𝐿 𝑦)
⎞⎟
⎠

(7.8)

is applied to it, resulting in four counter-rotating rolls as illustrated in
figure 7.8. Reference 440 provides an analytic prediction for the steady-state
stress in the vicinity of the central point, where the flow is purely extensional,
i.e., 𝒖((𝐿/2, 𝐿/2)⊺, 𝑡) = 𝛼( ̂𝒆𝑥 − ̂𝒆𝑦).

We choose cell size 𝐿 = 214
√

2𝛥𝑥, Newtonian viscosity 𝜂n = 1.5𝜌𝛥𝑥2/
𝛥𝑡, polymer viscosity ratio 𝜉 = 1

3 , maximum velocity 𝑢0 = 10−3𝛥𝑥/𝛥𝑡,
and polymer relaxation times 𝜆p/𝛥𝑡 ∈ [1000, 24000]. The simulation is run
until sufficiently converged, which we find to be the case at 𝑡 = 20𝜆p. The
Weissenberg number is given by [440, 441]

Wi =
4𝜋𝜆p𝑢0

𝐿
, (7.9)

and the Reynolds number is low at

Re = 𝜌𝑢0𝐿
𝜂

= 0.1. (7.10)

We found that our simulations lead to a decoupling of the stress at
the center point from the rest of the domain due to the upwind scheme
from section 4.2.2. To avoid this, we rotated the lattice by 45∘ relative
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𝑭 𝑭
𝐿

𝐿

𝑦

𝑥

Figure 7.8: Geometry of the four-roll mill. Four counter-rotating forces
𝑭 are applied to a periodic square flow cell of size 𝐿. This leads to a pure
extensional flow at the center of the cell. Velocity and stress will be measured
along the dashed line. The dotted square indicates the actual simulation
domain used, which still obeys the periodic boundary conditions.
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to the system as indicated in figure 7.8, while ensuring that the periodic
continuation of the system remains intact. We would like to stress that this
is a rather unusual situation, which only appears here due to the high level
of symmetry and the divergence at the central point. Such behavior will
not commonly appear in soft matter systems, but when it does, it is easily
identified in the stress profiles.

Figure 7.9a-d shows the stress component 𝜏𝑥𝑥 along a vertical line going
through the center of the cell, which is marked with a red cross in figure 7.8.
A comparison with reference 440 is drawn by fitting with its local solution,
also found in reference 442,

𝜏𝑥𝑥((𝐿/2, 𝑦)⊺,∞) =
2𝜂pWieff

𝜆p(1 − 2Wieff)
+ 𝐶 ∣ 𝑦

𝐿
− 1

2
∣
(1−2Wieff)/Wieff

. (7.11)

We fit via 𝐶 while keeping Wieff = 𝜆p𝛼 constant, as well as via both 𝐶 and
Wieff. We find that Wieff only differs by less than 1% between the two fits,
yet the latter fit is significantly better. This is because fitting an exponent
is very sensitive to small deviations. For Wieff < 1/4, the structure of the
stress profile is not captured well by the fit. This is due to the lack of a
singularity, as equation 7.11 was constructed with a singularity in mind [440].
Beyond this value, three regimes of solutions are recovered: continuous and
differentiable at the center (Wieff < 1/3), continuous but not differentiable
at the center (1/3 ≤ Wieff < 1/2), and diverging at the center (Wieff ≥ 1/2).
We reproduce the expected regimes, albeit with the caveat that divergences
in our scheme are not present, due to the smoothing of solutions that its
discretization imposes. Figure 7.9e plots Wieff that we obtained from the
fits via Wi. Comparison with the corresponding plot from reference 440 is
excellent up to Wieff ≈ 0.4 (corresponding to Wi ≈ 0.75), as expected due
to implicit smoothing of the divergences.

7.2.5 Sedimenting sphere
So far, all systems investigated were two-dimensional and had constant
boundary conditions. To demonstrate our algorithm’s capabilities beyond
this, we simulate the sedimentation of a rotating sphere. A sphere of radius
𝑅 is placed in a cubic box of size 𝐿3 with periodic boundary conditions. A
constant force 𝑭 = 𝐹𝑧 ̂𝒆𝑧 is applied to the sphere and the counterforce −𝑭
is distributed evenly among all fluid cells so that the net momentum of the
system remains zero. Furthermore, a constant torque 𝑴 = 𝑀𝑧 ̂𝒆𝑧 is applied
to the sphere to rotate it around the 𝑧-axis; a counter-torque on the fluid is
not needed [443]. The geometry is illustrated in figure 7.10.

145



7 An extensible lattice Boltzmann method for viscoelastic flows

0.90

0.95

1.00

−0.04 0 0.04

(a) (b)

(c) (d)

(e)

𝑦/𝐿 − 0.5

Wi = 0.25

0.90

0.95

1.00

1.05

−0.04 0 0.04
𝑦/𝐿 − 0.5

Wi = 0.50

0.70

0.80

0.90

1.00

−0.04 0 0.04

𝜏 𝑥
𝑥
((

𝐿/
2,

𝑦)
⊺
,∞

)/
2𝜂

p
W

i e
ff

𝜆 p
(1

−
2W

i e
ff

)

𝑦/𝐿 − 0.5

Wi = 0.75

0.30

0.40

0.50

0.60

0.70

−0.04 0 0.04

𝜏 𝑥
𝑥
((

𝐿/
2,

𝑦)
⊺
,∞

)/
2𝜂

p
W

i e
ff

𝜆 p
(1

−
2W

i e
ff

)

𝑦/𝐿 − 0.5

Wi = 1.00

0.0

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1

W
i eff

Wisimulation
fit via 𝐶, Wieff

fit via 𝐶
reference

Figure 7.9: (a-d) Stress 𝜏𝑥𝑥((𝐿/2, 𝑦)⊺,∞) near the center of the four-roll
mill for different polymer relaxation times 𝜆p. Symbols are our results, with
their connecting line coming from fitting equation 7.11 with an added offset.
The other lines are fits with equation 7.11 via one or two parameters. (e)
Wieff plotted over the Weissenberg number Wi. Symbols are our results,
while the line comes from reference 440.
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Figure 7.10: Geometry of the sedimenting sphere system. A sphere of
radius 𝑅 sediments under velocity 𝒗 due to an applied force 𝑭 in a periodic
cubic box of length 𝐿. A torque 𝑴 is applied to the sphere to rotate it with
velocity 𝝎.
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Figure 7.11: Sedimentation velocity of a rotating sphere in an Oldroyd-B
fluid. Symbols with error bars are our results, while the lines are theoretical
predictions from reference 444 for the same parameters (ending at Wimax
as per equation 7.17). The inset displays an enlargement of the lower left
region of the large graph indicated by the dotted box.
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We choose our parameters as 𝑅 = 8𝛥𝑥, 𝐿/𝑅 ∈ [7.5, 30], 𝐹𝑧 = 0.008𝜌𝛥𝑥4/
𝛥𝑡2, 𝜂n = 1

6𝜌𝛥𝑥2/𝛥𝑡, 𝜂p/𝜂n ∈ {0, 1
2 , 1, 2} and 𝜆p = 6000𝛥𝑡. The simulation

is run until the velocity 𝒗 of the sphere has converged, for which 𝑡 = 10𝜆p
tends to suffice. We can assume 𝑀𝑧 = 0 since it does not change the order
of magnitude of the sedimentation velocity 𝒗 [444] and employ Stokes’ law,

𝑣Stokes = 𝐹
6𝜋𝜂𝑅

, (7.12)

in order to estimate the Reynolds number for our parameter range as

Re = 2𝜌𝑣Stokes𝑅
𝜂

= 𝜌𝐹
3𝜋𝜂2 ∈ [0.003, 0.03], (7.13)

which lies well in the low-Reynolds regime. The Weissenberg and Deborah
numbers of the system are given by [444]

Wi = 𝜆p𝜔𝑧 (7.14)

De =
𝜆p𝑣0

𝑅
, (7.15)

where 𝝎 = 𝜔𝑧 ̂𝒆𝑧 is the measured angular velocity of the sphere. 𝑣0 is the
sedimentation velocity measured for 𝜔𝑧 = 0, with all other parameters kept
equal. 𝜔𝑧 can be varied by changing the applied torque 𝑀𝑧. 𝑀𝑧 is chosen
such that we cover a range of Weissenberg numbers while staying below a
certain value of the tangential velocity 𝑣t = 𝜔𝑧𝑅 in order to not jeopardize
the LB’s stability. To achieve this, we define a maximum surface Reynolds
number

Ret,max =
2𝜌𝑣t,max𝑅

𝜂
≡ 0.1, (7.16)

which can be used to obtain a maximum allowed Weissenberg number as

Wimax = 𝜆p𝜔max =
𝜆pRet,max𝜂

2𝜌𝑅2 . (7.17)

The parameters provided above correspond to four sets of simulations
with different polymer viscosity fractions 𝜉. Within each set, the variation
of 𝜔𝑧 or 𝑀𝑧 corresponds to a change in Wi, which makes the horizontal axis
of figure 7.11. To obtain the value on the vertical axis, first an exponential
decay is fitted to 𝒗(𝑡) to extrapolate to 𝑡 → ∞, and then simulations at
different 𝐿 are used to extrapolate it to 𝐿 → ∞ (under the assumption that
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the periodic interactions scale like a force monopole, i.e. 𝐿−1). The fit error
of these two processes is used to obtain the plot error bars. In figure 7.11,
we also compare to an analytic solution by Housiadas [444], who expanded
𝑣 in terms of De for arbitrary 𝜉 and 𝜒 = Wi/De to obtain

𝑣
𝑣Stokes

= 1 + 𝜉De2𝐶2 − 𝜉De4𝐶4 (7.18)

with

𝐶2 = −0.01031 − 0.0057143𝜉 − (0.12208 − 0.0095238𝜉)𝜒2

𝐶4 = 𝐶40 + 𝜒2𝐶42 + 𝜒4𝐶44

𝐶40 = 0.013945 + 0.00017174𝜉 − 0.0024713𝜉2 + 0.00050884𝜉3

𝐶42 = 0.060266 + 0.0067056𝜉 − 0.013849𝜉2 + 0.0058942𝜉3

𝐶44 = 0.04645𝜉 − 0.011483𝜉2 − 0.00039651𝜉3.

They then perform a Padé transformation [445] to improve convergence,
resulting in

𝑣
𝑣Stokes

= 1 + 𝜉 De2𝐶2
2

𝐶2 − De2𝐶4
. (7.19)

Agreement is mostly within error bars up to Wi ≈ 1. Deviations beyond
that are comparable to those found by reference 444’s own comparison to
numerical results from reference 446 for similar parameters. This shows that
our method reproduces the analytic solution in its range of validity, while
behaving similar to other methods beyond that realm. In the absence of
rotation (Wi = 0), viscoelastic effects become negligible (𝑣 ≈ 𝑣Stokes) for an
Oldroyd-B fluid, but they may be observed with other constitutive relations
like Giesekus even for purely linear motion [447].

7.2.6 Two-sphere snowman
The next system to be considered is one whose behavior differs drastically
between the Newtonian and the viscoelastic case. It consists of a snowman-
shaped object rotated by an applied torque 𝑴 = 𝑀𝑧 ̂𝒆𝑧. In a Newtonian
fluid, it does not move, while a viscoelastic fluid allows it to move in the
direction of the smaller sphere [448]. When the two spheres are made to
counter-rotate, it was found that motion happens in the opposite direction
[449]. The former behavior has been experimentally demonstrated [450, 451],
where the rotation is induced by a magnetic field. The snowman is composed
of two spheres of radii 𝑅1 and 𝑅2 with a center-to-center distance of ℎ and
rigidly connected by a cylinder that does not interact hydrodynamically.
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Figure 7.12: Geometry of the two-sphere snowman. Two spheres of radii
𝑅1 and 𝑅2, connected by a hydrodynamically invisible rod, are placed in a
periodic cubic box of length 𝐿. A torque 𝑴 is applied to the snowman to
rotate it with velocity 𝝎, which causes it move at velocity 𝒗.
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Without loss of generality, we assume 𝑅1 ≥ 𝑅2. The geometry is illustrated
in figure 7.12.

We choose our parameters as 𝑅1 = 16𝛥𝑥, 𝑅2 = 0.5𝑅1, 𝐿/𝑅1 ∈ [12, 24],
ℎ/𝑅1 ∈ [2, 5], 𝜂n = 1

6𝜌𝛥𝑥2/𝛥𝑡, 𝜂p = 𝜂n and 𝜆p = 6000𝛥𝑡. 𝑀𝑧 is picked
such that Wi = 0.1 is obtained. The Weissenberg number is given by [448]

Wi = 𝜆p𝜔𝑧. (7.20)

The Reynolds number is estimated as

Re = 2𝜌𝑣𝑧𝑅1
𝜂

≈ 10−2. (7.21)

As in section 7.2.5, time and box size are extrapolated to infinity, though
this time under the assumption that the periodic interactions scale like 𝐿−2

since the leading-order mode is a force dipole. The extrapolation error is
combined with the error due to the grid resolution and the slight deviation
of the measured Wi from its intended value to obtain error bounds. Our
results displayed in figure 7.13 agree with the calculations of reference 448
within the error bars except for our smallest values of ℎ. We also tried
simulations for the smallest geometrically permissible ℎ = 𝑅1 + 𝑅2, but find
that these simulations become unstable, starting from the cells around the
point where the two spheres touch. This is expected as standard LB cannot
handle fluid in confinement regions on the length scale of 𝛥𝑥; this problem
cannot be circumvented by increasing the grid resolution. As we increase ℎ,
the simulation becomes stable for ℎ ≳ 𝑅1 + 𝑅2 + 4𝛥𝑥, yet the velocity of
the snowman does not converge until ℎ ≳ 𝑅1 + 2𝑅2. This problem does not
appear to be explicable by the small gap size, but might have other causes,
such as the rigid coupling between the two spheres being incompatible with
their hydrodynamic interaction. Note that this is not a limitation of our
algorithm, but rather of LB itself. It is unclear whether this issue is in any
way related to the one observed in section 5.2.2.

7.2.7 Squirmer
As the final system, we consider a microswimmer. One of the simplest
hydrodynamic models for one is the squirmer [20, 21], which was introduced
in section 2.4. It was inspired by the microorganism Paramecium, whose
cilia perform a certain beat pattern that can be described by the boundary
condition of equation 2.44. For details on how this can be incorporated
into an LB simulation via moving boundaries, see chapter 5. Unlike the
snowman of section 7.2.6, the squirmer propels without external actuation.
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Figure 7.13: Translational velocity of a rotating two-sphere snowman in an
Oldroyd-B fluid. Symbols with error bars are our results, while the lines are
calculations from reference 448 for the same parameters. 𝜉 = 0.5, Wi = 0.1
and 𝑅2/𝑅1 = 0.5 were used.
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Figure 7.14: Geometry of the squirmer system. A squirmer of radius 𝑅
moves at velocity 𝒗 in a periodic cubic box of length 𝐿.
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7.2 Validation and results

In a Newtonian fluid in the absence of boundaries, it moves at a constant
speed of 𝒗0 = 2

3𝐵1 ̂𝒆. In a viscoelastic fluid, its velocity depends on the
Weissenberg number [452].

We choose our parameters as 𝑅 = 8𝛥𝑥, 𝐿/𝑅 ∈ [10, 30], 𝜂n = 1
6𝜌𝛥𝑥2/𝛥𝑡,

𝜂p = 𝜂n, and 𝛽 ∈ {−1, 0,−1}. We vary 𝑣0 ∈ {10−4, 10−3} and 𝜆p/𝛥𝑡 ∈ [600,
6000] to obtain different Weissenberg numbers. The Weissenberg number is
given by [452]

Wi =
𝜆p𝐵1

𝑅
. (7.22)

Since the viscoelastic effects do not change the order of magnitude of the
propulsion velocity, we can again estimate the Reynolds number by its
Newtonian value,

Re = 2𝜌𝑣0𝑅
𝜂

∈ [0.005, 0.05], (7.23)

which is again sufficiently small.
Time and box size are again extrapolated to infinity as described in

section 7.2.5. The extrapolation error is combined with the error due to the
grid resolution to obtain error bounds. Figure 7.15 shows our results and
compares them with the prediction by Binagia et al. [452] and Housiadas
et al. [453], who expanded 𝑣𝑧 in terms of Wi for arbitrary 𝜉 to obtain

𝑣𝑧
𝑣0

= 1 + 𝜉(Wi𝑈1 + Wi2𝑈2 + Wi3𝑈3 + Wi4𝑈4) (7.24)

with

𝑈1 = −0.2𝛽
𝑈2 = −0.53986 − 0.62118𝛽2 − 0.063736𝜉𝛽2

𝑈3 = 𝛽 (2.0038 − 0.20025𝜉 − 0.21489𝜉2

+ 0.65822𝛽2 + 0.20304𝜉𝛽2 − 0.16241𝜉2𝛽2)
𝑈4 = −0.48158 + 1.7141𝜉 − 0.66789𝜉2 − 1.4845𝛽2

+ 6.467𝜉𝛽2 − 1.4402𝜉2𝛽2 − 0.54389𝜉3𝛽2 − 0.20571𝛽4

+ 2.181𝜉𝛽4 − 0.46279𝜉2𝛽4 − 0.19509𝜉3𝛽4.

This is again Padé-transformed [445] to result in

𝑣
𝑣Stokes

= 1 + 𝜉 Wi(𝑈2
1 𝑈3 − 𝑈1𝑈2

2 ) − Wi2(𝑈3
2 − 2𝑈1𝑈2𝑈3 + 𝑈2

1 𝑈4)
(𝑈1𝑈3 − 𝑈2

2 ) + Wi(𝑈2𝑈3 − 𝑈1𝑈4) + Wi2(𝑈2𝑈4 − 𝑈2
3 )

.

(7.25)
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Figure 7.15: Propulsion velocity of puller, neutral and pusher squirmers in
an Oldroyd-B fluid with 𝜉 = 0.5. Symbols with error bars are our results,
while the lines are theoretical predictions from references 452 and 453 for
the same parameters.
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7.3 Summary

This expression is valid for Wi ≤ (4 − 4𝛽)−1 with 𝛽 ≤ 1
3 or Wi ≤ (2 + 2𝛽)−1

with 𝛽 > 1
3 [453]. Beyond this Weissenberg number, the Oldroyd-B model

becomes singular at the poles of the squirmer, however this is not observable
in our simulations due to the implicit regularization induced by the lattice.
Most other viscoelastic constitutive equations would not be constrained to
the low-Wi regime like this [453–455]. Recent work by Housiadas et al. [453]
revealed that the cause of the viscoelastic influence on the propulsion differs
between the different constitutive equations: in Oldroyd-B and FENE-P
it is attributed to a pressure difference between front and back, while in
Giesekus elastic stresses at the poles are found to be dominant.

We find agreement between our results and the prediction mostly within
error bars. A significant unexplained deviation is observed around Wi ≈ 0.07,
where velocity increases by several percent compared to the expected value.
The position of this peak is independent of parameters like 𝛽 or 𝑅. Orienting
the squirmer such that it swims in (1, 1, 1)⊺ direction instead of (0, 0, 1)⊺ as
before, however, moves the peak to Wi ≈ 0.1, or

√
3 times its previous value.

This suggests that not all periodicity artifacts have been accounted for.
Even though the results have been extrapolated to infinite box size, weak
interactions with periodic images of the squirmer with a different scaling
behavior may still be present.

7.3 Summary
We have introduced a method to simulate Oldroyd-B fluids with LB. It
uses moving boundaries to allow for the simulation of suspended colloids.
We validated our method against several rheological benchmark problems
and determined it to correspond well with literature for Weissenberg and
Deborah numbers and viscosity fractions between zero and one, a regime
relevant for many colloidal systems. We also validated our method for
specific colloidal problems, spheres sedimenting under an applied torque and
squirmers swimming, where analytic and numerical predictions are recovered
in their regime of validity. Computational effort scales linearly with the
number of fluid cells, while the computational cost of adding particles is
negligible compared to that of simulating the fluid. Published data on the
benchmarks we considered for this work covered only a small parameter
space, i.e. the few most relevant points, therefore we make our full data
set available to serve as a reliable reference for future investigations1. The
simulation code is also provided to enable others to study similar systems

1https://doi.org/10.24416/UU01-2AFZSW
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7 An extensible lattice Boltzmann method for viscoelastic flows

at parameters and resolutions of their choosing. Finally, thanks to the use
of automatic code generation, our model and implementation are easily
extensible to other viscoelastic models. Incorporating thermal fluctuations
[293] is also conceivable.

Our viscoelastic, moving-boundary LB facilitates future study of dense
colloidal suspensions in viscoelastic fluids. This might include the collective
sedimentation of colloids [456], which goes beyond the single-body effects
discussed in section 7.2.5. The field of self-propelled colloids is of particular
interest to us. Previous reports of viscoelastic enhancement of rotational
diffusivity [388], for example, have spurred interest in the community. Sim-
ulation studies [169] however could not discern whether this was an effect
of viscoelasticity or merely of an inhomogeneous polymer concentration.
Our method does away with the explicit consideration of polymers and
might settle such questions. Besides effective propulsion models [169, 452],
fully-resolved propulsion models as in chapter 8 might also be used, which
would permit investigating complex phenomena arising from the interplay of
hydrodynamics, viscoelasticity, electrostatics and phoretic interactions, such
as those experimentally studied in reference 457. Our new and extensively
validated method provides a first stepping stone toward such future physical
modeling.
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8 Moving charged particles in
lattice Boltzmann-based
electrokinetics

The dynamics of electrolytic solutions is essential to the description of most
most processes in (bio)chemistry and soft matter physics. This includes
electrostatic screening via the formation of double layers, electro-osmotic
flow [132, 458–460], electrophoresis [461–464], and self-electrophoresis [25,
33–35, 139, 369, 465]. Industrial applications range from DNA sequencing
[466, 467] and oil recovery [468] to the detection [469], separation [470],
and characterization [471] of analyte molecules. The coupled occurrence
of diffusion, hydrodynamics, and electrostatics, often referred to as elec-
trokinetics or electrohydrodynamics, gives rise to complex physical behavior.
Electrokinetic processes involve dynamics on vastly different length scales
with double layers typically having a nanometer scale in aqueous solution
and system geometries often ranging from several micrometers to millimeters.
The small length scales make it difficult to access the nanoscopic details in
experiment, while the large discrepancy in length scales poses a challenge to
simulation methods.

Existing methods that solve the electrokinetic equations numerically are
based on a variety of algorithms for hydrodynamics, generally falling into
two classes. Firstly, particle-based algorithms, which include dissipative
particle dynamics (DPD) [472, 473] and multi-particle collision dynamics
(MPCD) [474, 475]. Secondly, continuum (grid-based) algorithms, which
encompass methods like the finite element method (FEM) [35, 139, 369,
476], the boundary element method (BEM) [477–479], the boundary integral
method (BIM) [138], finite differences (FDs) [480], finite volumes (FVs)
[481], lattice electrokinetics (EK) based on lattice Boltzmann (LB) [282,
482], and the smooth profile method (SP) [483]. For additional details, we
refer to the overviews given in references 468 and 484.

The particle-based methods solve the full time-dependent problem and are
intrinsically able to include mobile charged colloids and macromolecules. The
downside of these methods is that solute ions, water, and macromolecules
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8 Moving charged particles in LB-based electrokinetics

are resolved on the same scale. This sets a low limit for the maximum size
of the simulation domain, given current computational abilities.

Continuum solvers allow for the study of systems with much larger length
scales because the ions are not resolved. In general, introducing moving
boundaries into numerical solvers for the continuum electrokinetic equations
poses a more challenging problem than for their particle-based counterparts.
Tackling this issue, however, is well worth the effort, as it grants access to
the wide variety of physical problems beyond those that can be studied via
Galilean transformation to the rest frame of the charged object, an approach
that is not possible in general. Moving particles will permit the study of
interactions of multiple (self-)electrophoretically driven colloids, as well as
their interactions with any stationary boundaries in the system.

When it comes to resolving large system sizes, the FEM has proven itself
to be a very efficient solver for the stationary electrokinetic equations. FEM
has been successfully applied in arbitrary geometries and for a diverse range
of physical systems, including: nanopores [485–487], self-electrophoresing
colloids [35, 139, 140, 369, 488–490], and electro-osmotic pumping [491,
492]. The strength of the FEM lies in its ability to adaptively increase the
resolution in regions with high gradients, i.e., the electric double layers.
The downside is that the treatment of time-dependent boundary positions
is computationally exceedingly expensive, due to the constant need for
re-meshing. Nevertheless, there are examples of its application to phoretic
problems with moving boundaries [493].

An alternative to FEM was proposed by Capuani et al. [282]. Their
EK method uses FVs to solve the diffusion-advection of solute and FDs
to solve the electrostatics problem. For hydrodynamics, they exploit the
computational efficiency of the LB method [261, 266]. Unlike earlier methods
that aimed to achieve a similar level of description [482], EK propagates the
solute by considering solute fluxes between neighboring lattice cells instead
of concentrations in lattice cells, thus ensuring local mass conservation and
reducing discretization artifacts [282]. Unlike the FEM and the grid-based
method of reference 480, this can be used to solve the full time-dependent
electrokinetic equations in a fixed geometry. Furthermore, EK, like LB, is
a local algorithm, with the exception of the electrostatics solver, making
it generally more efficient than FEM and other solvers, which are fully
non-local.

Of specific interest is EK’s ability to resolve the particles’ surfaces as
boundary conditions on the grid. This allows for the study of extended
objects and straightforward incorporation of local variation of the surface
properties, which is, e.g., useful in studying self-propelled particles [134] as
discussed in section 1.2.2. Extending this method further with dynamically-
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adaptive grid refinement, a common practice in LB [321], will constitute an
algorithm fully capable of directly modeling microfluidic systems.

The EK method has previously been used to study problems such as
electrophoresis [494] and sedimentation [282] of single charged spherical
colloids. Other applications include charge transport in porous media [495,
496] and the translocation of DNA molecules through nanopores [497], where
this method can tremendously reduce computational effort when compared
to particle-based methods, and thus enable one to reach experimentally
relevant length and time scales.

Direct solutions of the electrokinetic equations, a highly coupled system
of equations, are available through the Poisson-Boltzmann (PB) theory of
section 2.2.2, but are limited to equilibrium systems and rarely analytically
possible, even less so in arbitrary geometries. Therefore, we resort to
numerical methods to solve them. While approaches like linearizing the
problem and solving it using perturbation theory [461] are available, we
solve the full nonlinear equations by discretizing them on a lattice.

In this chapter, we present an extension of the EK method proposed by
Capuani et al. [282] to include moving boundaries. For the underlying LB
method, a moving boundary scheme [304, 305] is already widely employed
for moving particles. To adapt the EK method for moving boundaries, we
first introduce solute mass and charge conservation by displacing solute from
cells that are claimed by a moving particle. We subsequently add a partial
volume smoothing to reduce the effect of a cell being claimed in a single
time step. We do so by incorporating a term in the solute flux calculation
that depends on the amount of volume in a cell that is overlapped by a
particle. This allows for a gradual expulsion of solute from a cell as it is
increasingly overlapped.

We validate our method by considering the problem of electrophoresis
of spherical colloids in an external field. We observe that the moving
boundary method is capable of reproducing results using the Capuani
method with fixed boundaries (in the co-moving frame). Moreover, we
observe that the smoothing term is necessary to prevent strong variations
in the particle velocity due to the grid discretization — it reduces the
oscillations by more than a factor of 10. The added computational cost due
to the moving boundaries amounts to approximately a 10% increase per
time step, compared to the stationary boundary algorithm of Capuani et al.
[282]. The method we describe retains the flexibility and efficiency of the LB
and EK methods, while granting the EK method access to an entire class of
problems where the relative motion of multiple particles is of relevance.

The remainder of this chapter is laid out as follows: In section 8.1, we
summarize the governing equations and the numerical methods, including
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8 Moving charged particles in LB-based electrokinetics

a novel method for coupling moving particles with EK. In section 8.2,
we validate the new method by comparing equivalent electrophoretic and
electro-osmotic systems. We conclude in section 8.3.

8.1 Model and methods
In this chapter, we consider colloidal particles suspended in an electrolyte
solution. The latter is described by the Stokes equations (section 2.1.3)
and the electrokinetic equations (section 2.2). They are solved by the LB
method (section 4.1) and the EK method (section 4.2.4), respectively. For
the electrostatics, the solver of section 4.3 is used. Section 4.4.1 describes the
moving boundary method for coupling particles into LB, while section 4.4.2
describes our new method for combining moving boundaries with EK.

The waLBerla framework is detailed in section 4.5. At the time this
chapter’s simulations were performed, pystencils had not been developed
yet and the rigid body dynamics module was not fully integrated into
waLBerla, so waLBerla modules originally developed for use in reference
213 were employed. Nowadays, the same method can be constructed from
components that are available in waLBerla itself.

8.2 Validation
In this section, we perform several simulations with known results to confirm
that the accuracy of the newly-devised method. The first one involving
only a single colloid undergoing electrophoresis can be performed without
moving boundaries by means of a Galilean transformation, so it lends itself
to comparison with the well-established EK method with fixed boundaries.
The second one involves a suspension of electrophoresing colloids; since they
can move freely relative to each other and relative to the lattice, the use of
moving boundaries is mandatory.

8.2.1 Electrophoresis of a single colloid
To validate the moving boundary EK method described in section 4.4.2, we
choose a simple system consisting of an electrophoresing sphere. Specifically,
we simulate a single, homogeneously charged, spherical colloid in a cubic box
with periodic boundary conditions undergoing electrophoresis in a uniform
external electric field, as illustrated in figure 8.1. This system has already
been studied extensively using the EK method without moving boundaries
by considering the equivalent problem of electro-osmotic flow [494].
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8.2 Validation
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Figure 8.1: Geometry of the electrophoresing colloid. A spherical particle
with radius 𝑅 and charge 𝑄 is dragged through an electrolyte solution by
an electric field 𝑬 in a periodic cubic box of length 𝐿. Counterions to the
sphere are present in the fluid, so the overall system is charge-neutral.
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8 Moving charged particles in LB-based electrokinetics

The parameters used are given in table 8.1. They were chosen to match one
of the data points of reference 494. A salt concentration of 𝑐 = 10−3 mol L−1

is experimentally relevant [498–501] and the (effective) colloid charge of
𝑄 = 30𝑒 is realistic for a particle of radius 𝑅 = 4 ⋅ 10−9 m. The Debye
length resulting from equation 2.34, 𝜆D = 10 nm for that concentration, is
neither in the thin (𝜆D ≪ 𝑅) nor thick (𝜆D ≫ 𝑅) double layer limit and
should thus demonstrate the capability of the method to deal with these
intermediate regimes. The charge of 𝑄 = 30𝑒 was chosen such that the
Debye-Hückel theory of equation 2.32 is not applicable — the requirement
being 𝑒𝜁 < 𝑘B𝑇 with 𝜁 = 𝑄𝑘𝐵𝑇𝜆B/𝑒(𝑅 + 𝑅2/𝜆D) — while for 𝑄 = 3𝑒, it
is. The salt concentration 𝑐 and the grid spacing 𝛥𝑥 need to be chosen
such that one Debye length is resolved by a minimum of approximately
4 cells, as we will see during validation. This precludes us from using a
salt concentration of much higher than 𝑐 = 10−3 mol L−1 without increasing
the grid resolution. However, sufficiently resolving the double layer is a
general requirement of the EK method [282], as well as for FEM and other
algorithms, and not specific to the use of moving boundaries. We will
compare the results of the different simulation methods via a single number,
the reduced electrophoretic mobility [502]:

̃𝜇 = 6𝜋𝜂𝜆B
𝑒

𝑣
𝐸

, (8.1)

where 𝑣 is the speed of the particle’s motion relative to the bulk fluid and 𝐸
is the applied electric field.

Figure 8.2 compares results obtained for the same parameter set (particle
radius 𝑅 ≈ 4 ⋅ 10−9 m, particle charge 𝑄 = 30𝑒, and salt concentration
𝑐 = 10−3 mol L−1) for a simulation with a fixed particle, a moving particle
without, and a moving particle with the partial volume scheme, respectively.
The effective particle radius in the moving scheme is obtained by counting
the number of cells that are completely inside the particle, averaging that
number over the simulation time, and setting it equal to the sphere volume
(4/3)𝜋𝑅3. This allows us to choose 𝑅 such that the moving and stationary
simulations study the same physical system. One can see that both moving
particle methods on average agree with the fixed boundary simulation’s
stationary mobility value to within 1.4% and 2.4%, respectively. Agreement
of the full time evolution is not expected as the electro-osmotic (fixed
boundary) and electrophoretic (moving boundary) problems are, in fact,
only equivalent in the stationary state. The method without partial volumes
results in a mobility oscillating with an amplitude of 20.3% around the
mean and a period corresponding to the time it takes the particle to move
forward by one grid cell. On the other hand, the partial volume scheme of
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Temperature 𝑇 = 298.15 K
Relative permittivity 𝜀r = 78.54

Fluid density 𝜌 = 997.04 kgm−3

Viscosity 𝜂 = 0.8937 ⋅ 10−3 Pa s

Salt concentration 𝑐 = 10−3 mol L−1

𝑐 = 10−4 mol L−1

Salt valency 𝑧± = ±1
Diffusion coefficient 𝐷 = 2 ⋅ 10−9 m2 s−1

External field 𝐸 = 256.9 ⋅ 103 Vm−1

Sphere radius 𝑅 ≈ 3 ⋅ 10−9 m to 8 ⋅ 10−9 m
Sphere charge 𝑄 = 3 e = 0.4807 ⋅ 10−18 C

𝑄 = 30 e = 4.807 ⋅ 10−18 C
Density of particle 𝜌p = 2𝜌

Box length 𝐿 = 64 ⋅ 10−9 m

Length unit 𝛥𝑥 = 10−9 m
Mass unit 𝛥𝑚 = 𝜌𝛥𝑥3 = 9.97 ⋅ 10−25 kg

Energy unit 𝛥𝐸 = 𝑘B𝑇 = 4.12 ⋅ 10−21 J
Time unit 𝛥𝑡 = √𝛥𝑚𝛥𝑥2/𝛥𝐸

= 1.56 ⋅ 10−11 s
LB grid spacing 𝛥𝑥
LB time step 0.2𝛥𝑡

Table 8.1: Parameters used in the simulation and their conversion to
simulation units. Note that our choice of 𝜌p = 2𝜌 is arbitrary and irrelevant
to the working of our algorithm, as verified for a single system where we
used 𝜌p = 𝜌.
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Figure 8.2: Comparison of the transient behavior (𝑡 denotes time) of the
reduced electrophoretic mobility ̃𝜇 for the fixed particle (purple curve), the
particle moving via the simple moving boundary scheme (blue curve), and
the particle moving via the partial volume scheme (green curve). Here,
𝑅 = 4 ⋅ 10−9 m, 𝑄 = 30𝑒, and 𝑐 = 10−3 mol L−1 were used.
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section 4.4.2.2 reduces the mobility oscillations to 1.7%, which is generally
small enough to consider any instantaneous value to be a good estimate
for the true value. The period remains bound to the time it takes for the
particle to move forward by one cell.

To ensure that the method does not adversely affect the shape of the
electric double layer around the colloid, we examine the charge distribution
around the colloid in figure 8.3. We see there is a small deviation close to
the colloid’s surface, but we can attribute this to the slight difference in
particle size, as discussed above.

We further validated the partial volume method by running additional
simulations with various salt concentrations 𝑐, particle charges 𝑄, and
particle radii 𝑅. The results are presented in figure 8.4 and are compared
with reference results obtained by solving the electrokinetic equations with
the FEM solver COMSOL. Note that we use a finite but large simulation
domain in the FEM model, while the EK model handles periodic boundary
conditions naturally; this may lead to slight differences in the results obtained
with both methods. We observe an excellent agreement between fixed and
moving boundary simulations, as well as the FEM reference results. The
agreement improves as the particle size is increased, and thus the quality
of the staircase approximation to its spherical shape. For example, for
𝑅 ≈ 7 ⋅ 10−9 m, 𝑄 = 30𝑒, and 𝑐 = 10−3 mol L−1, the oscillation amplitude
drops to 1.3%. The remaining difference in the mobility is easily explained
by a slight mismatch in volume (and thus effective radius) between the fixed
and the moving particle.

Finally, we examined the speed of our simulation compared to the method
of Capuani et al. [282] for the geometries that we considered. The moving
boundary algorithm adds only 2% to the simulation time per time step,
when compared to the equivalent fixed boundary simulation. Our smoothing
results in a further increase of less than 10% in time, when compared to the
non-smoothed moving boundaries. Together, this shows that our method
does not incur an unreasonable computational cost and can therefore be
straightforwardly applied to domain sizes that are currently accessible to
the Capuani et al. method [282, 494].

8.2.2 Electrophoresis of a colloidal suspension
In this section, we consider the electrophoresis of a system comprised of
several spheres. This allows us to verify our moving boundary method
in a more physically complex system with interactions that the original
Capuani et al. method could not access. We pick one parameter set (𝑅 ≈
4 ⋅ 10−9 m, 𝑄 = 30𝑒, and 𝑐 = 10−3 mol L−1) and repeat the simulation from
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Figure 8.3: Comparison of the shape of the double layer around the colloid
for the fixed and moving particles. Here, 𝑅 ≈ 4 ⋅ 10−9 m, 𝑄 = 30𝑒, and
𝑐 = 10−3 mol L−1 were used. The shaded area refers to the space taken up
by the colloid. The dashed line shows the absolute difference between the
two charge distributions.

0.2
0.3
0.4
0.5
0.6

𝑄
=

3𝑒
𝑄

=
30

𝑒

𝑐 = 1mmol/l 𝑐 = 0.1mmol/l

̃𝜇

moving
fixed
FEM

2.0

3.0

4.0

5.0

3 4 5 6 7

̃𝜇

𝑅 / nm
3 4 5 6 7

𝑅 / nm

Figure 8.4: Comparison of the steady-state value of the electrophoretic
mobility for different values of 𝑅, 𝑐, and 𝑄.
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8.3 Summary

the previous section. At these parameters, the volume fraction is about 0.1%
and the double layers do not overlap noticeably, therefore only long-ranged
hydrodynamic interactions are expected to mediate interactions between
the colloids. Instead of having one spherical colloid interact with only its
periodic images, we now enlarge the simulation box and add additional
identical spheres while keeping the colloidal volume fraction constant. The
colloids are either positioned randomly in a cubic box or in a regular lattice
in a cuboidal box. This kind of simulation is typically performed to ensure
the results do not suffer from artifacts of the periodic boundary conditions
[498]. As opposed to the single colloid and its periodic images, which always
maintain their relative positions, the colloids in this simulation are free to
move relative to each other.

Figure 8.5 shows that the electrophoretic mobility is indeed mostly in-
dependent of the number of colloids, varying 0.9% from the average and
1.8% from the value for one colloid in periodic boundary conditions. This
matches the findings of Lobaskin et al. [498] using colloids modeled with
the Ahlrichs-Dünweg coupling [302, 443, 503], where agreement to within
a few percent was found. The results of the previous section are therefore
not artifacts of the periodicity of the simulation domain. For the case of a
cubic simulation domain, we furthermore observe that the alignment of the
colloids on a regular body-centered cubic lattice is a stable configuration.

8.3 Summary
Summarizing, we have introduced a method to simulate electrokinetic phe-
nomena in colloidal suspensions. Our scheme builds upon the EK algorithm,
which itself is capable of simulating moving colloids only by considering them
as stationary boundary conditions in the Galilean-transformed (co-moving)
frame. Motion of the colloids relative to the lattice can be incorporated
by employing a method similar to the moving boundary method for LB.
A key modification is required, however: We introduce mass conservation
for the solute species in order to conserve charge. This is accomplished
by redistributing solute from and to cells neighboring the ones that were
recently vacated and claimed by the particle, respectively.

The above procedure is, in principle, sufficient to enable the simulation
of, for example, colloidal electrophoresis. However, in practice, further
improvements are desirable to allow for the simulation of colloids with as
few LB cells as possible. To reduce the effects of sudden and strong solute
fluxes, when a cell is claimed or vacated by a particle, a smoothing scheme
by partial volumes is introduced. That is, the electrokinetic equations are
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Figure 8.5: Comparison of the steady-state value of the electrophoretic
mobility for different numbers of colloids at constant volume fraction. Here,
𝑅 ≈ 4 ⋅ 10−9 m, 𝑄 = 30𝑒, and 𝑐 = 10−3 mol L−1 were used. The error
bars show the spread of values for different initial random placements of
colloids in cubic boxes, while the squares show the value obtained for initial
placement on a regular lattice.
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solved for an effective concentration that incorporates what fraction of a cell
is actually accessible to the solute, i.e., not overlapped by a colloid. This
form of smoothing reduces the lattice artifacts by more than an order of
magnitude in our test simulations. We also showed that having smoothing
and moving boundaries only slows down the simulation by 10% and 2%
respectively, compared to the original EK algorithm.

We validated our method for the electrophoresis of spherical colloids. For
a single sphere, we find excellent agreement of the reduced steady-state
electrophoretic mobility ̃𝜇 with the one obtained for the equivalent problem
of electro-osmotic flow around a fixed sphere (co-moving frame). One can
also obtain a reliable estimate for the mobility without the smoothing via
partial volumes, but in this case it is necessary to average ̃𝜇 over one period
of its oscillations. While this is a feasible solution for the system under
consideration here, systems where the transient behavior of multiple particles
is of interest would require averaging over many periods, thus requiring
much longer overall simulation times. Alternatively, the oscillations could
be reduced by increasing the grid resolution. This is again not desirable, as
it comes with a steep increase in required computation time — performing
the same simulation at twice the grid resolution takes eight times as much
computing time. It is therefore clear that our smoothing is a prerequisite
for the efficient study of electrokinetic moving boundary problems.

Our moving boundary EK method was further verified for the electropho-
resis of multiple spheres that were free to move and interact. We find the
electrophoretic mobility of the spheres to be almost independent of their
initial arrangement. Such a simulation can only be performed with moving
boundaries and thus demonstrates the power of the method presented.

Note that our moving boundary EK method imposes no limitations on
simulation parameters beyond those already present in the original non-
moving algorithm. These requirements include sufficient discretization of
the double layer and limitations on the choice of time step, diffusivity, and
grid discretization [282]. Furthermore, it leaves the EK and LB algorithms
almost unmodified, which makes it easy to incorporate into existing LB or
EK simulation codes. Finally, it also does not influence the scaling behavior
of these algorithms as the work required to map a particle onto the lattice
is linear in the number of lattice cells and particles.

In this investigation, we have primarily studied the case of external
electrophoresis of a single colloid. As we have shown, however, our method
can also be employed to investigate cases where Galilean transformation to a
co-moving frame for the study of an equivalent electro-osmotic is not possible.
These types of systems will be the subject of future work and could include
a diverse range of systems. For example, our method is readily applicable
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to study the translocation, characterization, concentration, separation, and
transport of DNA, proteins, and other biochemical analytes; interactions
between oppositely charged nanoparticles in an oscillatory electric field;
collective dynamics of self-electrophoresing colloids (see sections 1.1.4, 1.2.2
and 2.2.3), and many others. Our work thus opens the door for the study
of a wide range of physical systems that were previously inaccessible to
continuum lattice-based methods.
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We have discussed a number of simulation techniques for microswimmers in
this thesis, with particular focus on those that resolve the region around
a swimmer’s surface. The latter is a prerequisite to accurately modeling
hydrodynamic interactions and to accounting for effects that depend on the
details of the propulsion mechanism. We did so by building upon existing
methods, either significantly expanding the capabilities of the method or
identifying and resolving its weaknesses. This made these methods better
suited to the specific conditions and environments encountered by artificial
and biological microswimmers, such as electrolyte solutions, viscoelastic
fluids, and the proximity of surfaces and other swimmers. The use of lattice
methods combined a high degree of numerical accuracy with computational
efficiency. We extensively validated our methods and determined their
domain of applicability. Theoretical explanations for hydrodynamic mobility
reversal were found that had not previously been reported. An important
feature of my work is that I developed models that are broadly applicable.
For example, the lattice Boltzmann (LB) method for viscoelastic media
allows for facile switching between constitutive relations. The rest of the
present chapter will summarize my achievements under these aspects and
provide an outlook on future extensions and applications worthwhile of
further research.

Chapter 1 started with a general overview of the field of active matter,
pointing out the various means of propulsion that have been considered
experimentally and which physical aspects need to be accounted for to
accurately capture them in simple models. The most common modeling
approaches were introduced and grouped by their level of detail. This led
us to the LB method, which is well established in fluid dynamics and soft
matter physics. It has previously been extended to allow for particle coupling
and the modeling of various kinds of complex fluids and is thus well-suited
for the intents of this thesis. In chapter 2, the theoretical background to
the problems studied was laid out. This included the transport of mass and
momentum in a fluid, as described by the Stokes equations. We considered
a simple linear constitutive relation to describe Newtonian fluids like water,
as well as a nonlinear one, specifically the Oldroyd-B model for viscoelastic
fluids. Next, the transport dynamics of solute ions by Poisson-Nernst-Planck
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processes were presented. Together with chemical reactions, they can serve
as the basis for propulsion by self-electrophoresis or self-diffusiophoresis. The
squirmer was also introduced as a simplified, purely hydrodynamic propulsion
model. It is well-suited for validation purposes due to its widespread use in
literature. At the same time, it offers sufficient complexity that unexpected
results on its behavior in non-Newtonian fluids and at surfaces can still be
found today. In chapter 3, we discussed analytic far-field methods relevant to
the study of the squirmer model. Chapter 4 moved on to models that allow
for near-field resolution. In it, we introduced computational methods based
on LB, finite volumes (FVs), and fast Fourier transformation (FFT). The
development of these methods went hand-in-hand with the results presented
in chapters 5 to 8, which we lay out next:

Chapter 5, previously published in reference 2, validated an LB model
for squirmers. The squirmer equation served as a boundary condition on
particles’ surfaces, which were incorporated using the moving boundary
method. While such models have been used before, no systematic information
on resolution requirements was available. We found that the model can
become numerically unstable at low resolutions for which passive particles
behave well and achieve accuracies that are widely accepted in the field.
Resolution effects were particularly pronounced when there was a preferred
direction in the system. We also noticed that strong pusher squirmers are
able to swim backwards along surfaces, an observation that inspired the
following chapter.

Chapter 6, building upon reference 3, studied a squirmer at flat, convex,
and concave walls using a far-field model. The simplicity of the model and
the low dimensionality of the parameter space enabled us to fully determine
the conditions under which the squirmer swims forward or backward along
the wall, scatters off it, or hovers in front of it. The backward motion could
be attributed to the source quadrupole component of the squirmer flow.
Mobility reversal had previously been attributed to phoretic or electrostatic
interactions, but our result demonstrated that hydrodynamics alone are
sufficient. Recently, Chaithanya and Thampi [167] explored this direction
further: They quantified the trajectories in terms of properties like scattering
angles or average distance and performed further LB comparison, finding
their results consistent with ours. Open questions remain, however, about
the influence of higher-order multipoles — like the force quadrupole or the
octupoles — which are not present in the simplest squirmer, but appear in
natural and artificial microswimmers. Artificial swimmers involve chemical
fields in addition to the hydrodynamics, an aspect whose far-field description
has recently received attention [366, 378, 385]. That work could serve as a
starting point to determine whether the propulsion details of an artificial
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swimmer suppress or enhance mobility reversal.
In chapter 7, part of which has been published in reference 4, we con-

structed and validated a lattice model for viscoelastic fluids. An FV scheme
was coupled to LB, ensuring momentum conservation while enabling particle
coupling via an extension of the moving boundary scheme. It should be
noted that implementation using the code-generation capabilities of the
waLBerla and pystencils frameworks allows for the effortless extension of
our code to arbitrary constitutive relations. We validated our method for
Oldroyd-B as it is the simplest constitutive relation, but the step to more
realistic viscoelastic models can be made by simply replacing an equation.
As part of the validation, a lid-driven cavity was simulated, where we sub-
stantially improved upon the available literature results. We published
our high-resolution data set to serve as a future reference. Viscoelastic
translation-rotation coupling was confirmed by the simulation of two rigidly-
coupled spheres spinning due to an applied torque; motion along the rotation
axis is only observed in viscoelastic fluids. The step from external actua-
tion to the autonomous propulsion of microswimmers was made by again
simulating a squirmer, for which analytic reference solutions are available
in literature for various constitutive equations. Simulating a squirmer may,
however, be problematic due to flow singularities at its poles as discussed in
recent literature [453, 454]. Similarly, the singularity at the center of the
four-roll mill required special attention. More complex viscoelastic models
like FENE-P or Giesekus should be used in future work to avoid these. Such
models also resemble biological fluids more accurately and are thus better
suited to the study of bacteria or medical microrobots. Thermal fluctuations
are relevant for some applications [169, 388] and their incorporation into
continuum models like ours has become conceivable based on recent work
[293].

Chapter 8, based on reference 1, extended an existing LB-FV model for
electrolyte solutions by the addition of moving boundaries. Validation was
performed by considering colloidal electrophoresis in the co-moving and
laboratory frames, i.e. with moving and with stationary boundaries. It is
worth noting that a partial-volume smoothing scheme was needed to mitigate
adverse effects that occur when lattice cells are converted between fluid and
solid. This smoothing derives from the idea that all solute is in that part of
a cell that is not occupied by the particle; an appropriately renormalized
Nernst-Planck equation could thus provide sub-grid resolution. This method
was intended to provide the basis for simulations of self-electrophoretic
colloids by adding chemical reactions as described in section 4.2.5 [35, 213].
Interactions between the smoothing scheme and the reactions unfortunately
made this much more difficult than anticipated, hence the actual application
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of this method to microswimmers is left to future research. Caveats to our
implementation were provided in section 4.4.2.2, and we proposed a solution
to the identified issues in section 4.3.2.

The combined methods of chapters 7 and 8, along with this future ex-
tension to self-electrophoresis, will provide a valuable tool for the study
of chemical microswimmers in almost arbitrary fluid environments. The
analytic expressions for the flow fields caused by the different hydrodynamic
modes near a boundary provided in section 3.5 will prove useful to the
future study of microswimming in confinement. The implementation and
reference data on the lid-driven cavity in section 7.2.3 will serve as a useful
benchmark for future development of numerical methods for viscoelasticity.
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Zusammenfassung
Mikroschwimmer faszinieren die Menschen, seit man Bakterien erstmals
unter dem Mikroskop gesehen hat. Erst mit der Entwicklung der Mikro-
hydrodynamik fast drei Jahrhunderte später waren Physiker in der Lage,
die einzigartigen Herausforderungen, die die Umgebung eines Mikroorganis-
mus an seine Bewegung stellt, zu beschreiben und zu würdigen. Es wurde
festgestellt, dass das Schwimmen auf solchen Längenskalen völlig anders
funktioniert als das, was ein menschlicher Schwimmer gewohnt ist: Es gleicht
eher dem Versuch, durch Honig oder ein Gewirr von Seilen zu schwimmen,
als durch ein Wasserbecken. Theoretische Modelle wurden entwickelt, um
die Komplexität der Biologie in einfache Mathematik zu abstrahieren.

Das Feld gewann an Fahrt, als man erkannte, dass künstliche Mikroschwim-
mer eine Fülle von Anwendungen in Technik und Medizin haben könnten.
Nach den bahnbrechenden Experimenten von Paxton et al., deren Bimetall-
Nanostäbchen sich durch katalytische Zersetzung von Wasserstoffperoxid
fortbewegen, bald gefolgt von Howse et al. mit katalysatorbeschichteten,
nicht-leitenden Mikrokugeln, entwickelten Dutzende anderer Gruppen ih-
re eigenen Mikroschwimmer, die in den unterschiedlichsten Umgebungen
schwammen. Dabei wurden auch kollektive Effekte beobachtet, die bisher
nur von makroskopischen Skalen bekannt waren, wie etwa Turbulenz oder
Schwarmverhalten. Neue Antriebsarten wurden schneller entwickelt als das
theoretische Verständnis darüber gewonnen werden konnte, wie effizient oder
warum überhaupt sie funktionieren. Einige Leute argumentierten sogar, dass
ein natürlicher Mikroschwimmer wie Escherichia coli, kombiniert mit den
Werkzeugen der modernen Gentechnik, ein einfacheres, besser kontrollier-
bares Modell darstellen und mehr Einblick in das Mikroschwimmen geben
würde als jedes seiner künstlichen Pendants.

Es ist schwierig und zeitaufwendig, einen hochdimensionalen Parameter-
raum in Experimenten zu erforschen, und nicht immer sind alle relevanten
Größen direkt messbar. Ein Bottom-up-Modell kann hier Abhilfe schaffen,
sobald die relevanten physikalischen Phänomene — wie Diffusion, Hydrody-
namik oder Wärmeleitfähigkeit — identifiziert worden sind. Die charakteris-
tische Eigenschaft eines Bottom-up-Modells ist, dass es nur physikalische
Parameter enthält — wie Diffusionskoeffizienten, Viskosität oder Wärme-
kapazität — und keine Modellierungsparameter wie Oberflächenpotentiale
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oder effektive Ladungen. Ein solches Modell kann ein detaillierteres Bild von
dem geben, was im Experiment vor sich geht, und erlaubt es, Aspekte wie
Elektrostatik oder Hydrodynamik selektiv ein- und auszuschalten, um ihre
relative Signifikanz zu bestimmen. Es kann auch eingesetzt werden, um eine
Antriebsmethode auf Effizienz oder Geschwindigkeit in einer bestimmten
Umgebung zu optimieren. Analytische Theorie kann diese Modelle oft nur für
einfache Systeme oder in grober Näherung lösen, liefert aber mathematische
Ausdrücke, die eine Frage für einen großen Parameterbereich vollständig
beantworten. Die Stärke von Computersimulationen liegt dagegen in ihrer
Fähigkeit, komplexe Mehrkörperprobleme und beliebige Randbedingungen
zu behandeln. Folglich gehen theoretische und rechnergestützte Ansätze oft
Hand in Hand, um das Verständnis von Mikroschwimmern zu fördern, so
wie auch von vielen anderen Bereichen der Physik.

In dieser Dissertation werden verschiedene Modelle zur Untersuchung
von Mikroschwimmern vorgestellt, validiert und angewendet, wobei der
Schwerpunkt auf der Entwicklung von Gitteralgorithmen liegt. Die Modelle
sind auf biologische Schwimmer wie Bakterien anwendbar, aber auch auf
künstliche Schwimmer, die durch chemische Reaktionen angetrieben wer-
den. Das verbindende Thema ist eine komplexe Fluidumgebung, die von
Newton’schen Einkomponentenflüssigkeiten über Elektrolytlösungen bis hin
zu viskoelastischen Medien reicht, die durch beliebige Geometrien fließen.
Ein besonderer Schwerpunkt liegt auf der Auflösung der Oberfläche eines
jeden Schwimmers, da der Vortrieb, auch „Phorese“ genannt, von einer
dünnen Flüssigkeitsschicht um sie herum ausgeht. Die Auflösung des An-
triebsmechanismus ist notwendig, um hydrodynamische Wechselwirkungen
mit Hindernissen und anderen Schwimmern genau zu untersuchen. Sie ist
auch eine Voraussetzung für die Untersuchung von Taxis, der Ausrichtung in
einem äußeren Feld wie z.B. einem Nährstoffgradienten. In ähnlicher Weise
können phoretische Wechselwirkungen untersucht werden, z.B. wenn ein
Schwimmer die Spur wahrnimmt, auf der ein anderer Schwimmer bereits
den Treibstoff aufgebraucht hat, und ihr ausweicht.

Die Auflösung des Antriebs stellt eine Herausforderung dar, da sie den
erforderlichen Rechenaufwand deutlich erhöht. Andere Methoden wie Multi-
Particle Collision Dynamics oder Finite Elemente wurden bereits für diesen
Zweck verwendet, leiden aber unter unphysikalischen Effekten oder sind
nicht effizient genug, um instationäres Verhalten zu simulieren. Dieses offene
Problem wird durch die in der vorliegenden Arbeit entwickelten neuen Be-
rechnungsmethoden angegangen. Sie werden so konzipiert, dass sie allgemein
genug sind, um auch auf andere Arten von Flüssigkeiten und sogar auf Berei-
che der Physik der weichen Materie jenseits der aktiven Materie angewendet
werden zu können. Die Methoden basieren auf Gitter-Boltzmann (LB), das
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für zeitabhängige Probleme mit komplexen Randbedingungen gut geeig-
net ist. Die Berücksichtigung ionischer gelöster Stoffe und viskoelastischer
Spannung erfolgt über die Finite-Volumen-Methode (FV), die sich ideal für
die Untersuchung von Problemen eignet, die auf Erhaltungssätzen basieren.
Neuartige Schemata für bewegte Randbedingungen erlauben die Auflösung
der Schwimmer auf dem Gitter ohne Neugenerierung des Gitters, wenn
diese sich bewegen. Ein Sub-Grid-Schema wird eingesetzt, um Artefakte zu
glätten, die entstehen, wenn Gitterzellen zwischen flüssig und fest umge-
wandelt werden. Außerdem wird in dieser Arbeit ein einfaches analytisches
Fernfeldmodell verwendet, um eine Erklärung für die Mobilitätsumkehr von
einfachen Schwimmern an Hindernissen zu finden — ein Verhalten, das
zuvor zwar beobachtet, aber nicht allein durch die Hydrodynamik erklärt
wurde.

Die Entwicklung dieser Gittermethoden erlaubte es mir, einige von der
Literatur bislang offen gelassene Fragen zu beantworten, was zu vier Haupt-
ergebnissen führte, von denen jedes in einem eigenen Kapitel vorgestellt wird.
Das erste Ergebnis ist für einen Squirmer, ein einfaches, aber lehrreiches
Modell für Mikroschwimmer, das eine effektive Oberflächengeschwindigkeit
auf einer Kugel verwendet, um den Selbstantrieb zu beschreiben. Das Lösen
der Strömung um den Squirmer herum ist mit der LB-Methode relativ
einfach, erfordert jedoch eine unerwartet feine Gitterauflösung, um die phy-
sikalischen Strömungsfelder und das Schwimmverhalten mit ausreichender
Genauigkeit zu erfassen. Die Genauigkeit des LB-Modells wird anhand von
vier grundlegenden hydrodynamischen Tests demonstriert, zwei für die Fern-
feldströmung und zwei, bei denen das Nahfeld genau aufgelöst werden muss,
wozu LB bis hinunter zur Gitterauflösung in der Lage ist. Es wird eine
hervorragende Übereinstimmung mit Ergebnissen gefunden, die mit anderen
hydrodynamischen Lösern in den gleichen Geometrien erzielt wurden, und
es wird die minimale Auflösung ermittelt, die erforderlich ist, um diese
Übereinstimmung zu erreichen.

Das zweite Thema wurde durch eine unerwartete Mobilitätsumkehr in-
spiriert, die in einigen der LB-Squirmer-Simulationen beobachtet wurde.
Bei selbstgetriebenen Teilchen wurde experimentell gezeigt, dass sie kugel-
förmige Hindernisse umkreisen und sich entlang ebener Wände bewegen
können. Eine theoretische und numerische Untersuchung dieses Verhaltens
wird für einen Squirmer durchgeführt, der mit flachen und gekrümmten
Oberflächen wechselwirkt. Die Hydrodynamik wird mit Hilfe der hydro-
dynamischen Spiegelladungsmethode angenähert, die im Fernfeld exakt
ist; der LB-Löser wird verwendet, um zu bestätigen, dass die Vorhersagen
aus dem Fernfeld gültig bleiben, wenn auch die Strömungen im Nahfeld
berücksichtigt werden. Das Fernfeldmodell sagt drei verschiedene Verhal-
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tensweisen voraus: Umkreisen/Gleiten, Streuung und Schweben, wobei das
Umkreisen bei geringerer Krümmung wie aus dem Experiment bekannt
bevorzugt wird. Überraschenderweise sagen die Fernfeldberechnungen auch
ein rückwärtsgerichtetes Umkreisen/Gleiten für ausreichend starke Pusher
voraus. Dies wird durch Flüssigkeitsrezirkulation im Spalt zwischen dem
Squirmer und dem Hindernis verursacht, was zu starken Kräften führt, die
der Vorwärtsbewegung entgegenwirken. Der Effekt kann auf das Quadru-
polmoment des Squirmers zurückgeführt werden. Diese Ergebnisse geben
Einblick in einen möglichen Mechanismus der Mobilitätsumkehr, der allein
durch hydrodynamische Wechselwirkungen mit einer Oberfläche vermittelt
wird.

Das dritte Hauptthema betrifft viskoelastische Flüssigkeiten. Damit ist
es auf viele biologische Flüssigkeiten anwendbar, die zusätzlich zu den
dissipativen Eigenschaften, die in Newton’schen Flüssigkeiten zu finden
sind, auch elastische Eigenschaften aufweisen. Beispiele hierfür sind der
Verlust der Zeitreversibilität durch einen Memory-Effekt sowie eine Kopplung
zwischen Translation und Rotation. Computermodelle können uns helfen,
viskoelastische Strömungen zu verstehen, sind aber oft in der Handhabung
komplexer Strömungsgeometrien und suspendierter Teilchen eingeschränkt.
Einige bauen unphysikalische Zusatzterme in die konstitutiven Gleichungen
ein; andere erfordern, dass Spannungsrandbedingungen bekannt sind, was
bei beliebig geformten festen und beweglichen Rändern nicht von vornherein
der Fall ist. Der in dieser Arbeit vorgestellte LB-Löser für Oldroyd-B-
Fluide vermeidet diese Mängel, wodurch er sich ideal für die Simulation von
kolloidalen Suspensionen in beschränkten Geometrien eignet. Die Methode
wird unter Verwendung mehrerer rheologischer Standardaufbauten validiert:
instationäre Poiseuille-Strömung, stetige Scherströmung, die Lid-driven
Cavity und die Four-Roll Mill. Zusätzlich wird ein einzelnes sedimentierendes
Kolloid untersucht, um das neue Schema mit bewegten Randbedingungen
zu verifizieren; auch hier findet sich eine gute Übereinstimmung mit der
Literatur. Translations-Rotations-Kopplung, eine wichtige Eigenschaft von
viskoelastischen Medien, wird für zwei starr verbundene Kugeln demonstriert.
Dieses schneemannartige Gebilde wird durch ein von außen angelegtes
Drehmoment gedreht, was nur in viskoelastischen Flüssigkeiten zu einer
linearen Bewegung führt. Der Squirmer wird erneut verwendet, um die
Anwendbarkeit der Methode auf Mikroschwimmer zu zeigen, stößt aber
auch an die Grenzen von Oldroyd-B. Oldroyd-B wird unphysikalisch für
elastische Relaxationszeiten jenseits einer bestimmten Grenze. Der Ansatz
in der vorliegenden Arbeit ist jedoch so konzipiert, dass es einfach ist, den
Algorithmus auf andere konstitutive Gleichungen zu erweitern, wie z.B.
Giesekus oder FENE-P, die nicht unter derartigen Problemen leiden.
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Das vierte Thema befasst sich mit Kolloiden, die in Elektrolytlösungen
suspendiert sind. Dabei wird ein Schema mit bewegten Randbedingungen
eingeführt, das demjenigen für viskoelastische Flüssigkeiten ähnelt. Die Bewe-
gung von ionischen Solvaten und geladenen Teilchen unter dem Einfluss eines
elektrischen Feldes und die daraus resultierende hydrodynamische Strömung
des Lösungsmittels sind in der Physik der weichen Materie allgegenwärtig.
Der gelöste Stoff und die Strömung werden durch gekoppelte Differential-
gleichungen beschrieben, die zusammen als elektrokinetische Gleichungen
bezeichnet werden; ihre Randbedingungen definieren das spezifische zu be-
trachtende Problem. Es existierte schon vorher eine gitterbasierte Methode
zum Lösen dieses Gleichungssystems, die auf der Kopplung von LB und
FV basiert; diese erlaubte jedoch keine Teilchenkopplung. Die wichtigsten
Bestandteile der neuen Methode mit beweglichen Randbedingungen sind
die Massen- und Ladungserhaltung für die Solvate und ein Glättungsschema
zur Minimierung von Diskretisierungsartefakten. Die Leistungsfähigkeit des
Algorithmus wird durch die Simulation der Elektrophorese von geladenen
Kugeln in einem externen Feld demonstriert. Für eine einzelne Kugel wird
dies mit dem äquivalenten elektroosmotischen (mitbewegten) Problem vergli-
chen, wobei sich herausstellt, dass die Instantangeschwindigkeit im ersteren
Fall um nur 2% vom stationären Wert im letzteren Fall abweicht und die
zeitlichen Artefakte der Diskretisierung ebenfalls in dieser Größenordnung
liegen.

Das Forschungsgebiet der aktiven Materie hat sich seit Beginn meiner
Arbeit an dieser Dissertation im Jahr 2016 stark verändert. Die Entwicklung
und das Verständnis des Antriebs und des Verhaltens von künstlichen Mi-
kroschwimmern war eine der zentralen Fragen, die die Wissenschaft auf dem
Gebiet der aktiven Materie in den davorliegenden zehn Jahren beschäftigte.
Meine Arbeit zur Elektrokinetik sollte einen Beitrag zu diesem Forschungs-
zweig leisten, wobei sie gleichzeitig auch für die Bereiche Katalyse und
bioreaktive Strömungen relevant ist. Eine umfassende Antwort auf die offe-
nen Fragen zum selbst-diffusiophoretischen und selbst-elektrophoretischen
Antrieb steht leider noch aus, wobei das Haupthindernis im unzureichenden
Verständnis der beteiligten chemischen Reaktionen zu liegen scheint. Noch
bevor die Forschung an künstlichen Mikroschwimmern begann, war jedoch
bereits klar, dass ein Großteil des Verhaltens von Schwimmern auf großen
Skalen unabhängig von der jeweiligen Antriebsmethode ist. So konnten unab-
hängig von diesen Details wichtige Erkenntnisse über das Mikroschwimmen
gewonnen werden, z.B. durch die Untersuchung ihres Schwarmverhaltens
oder ihrer Wechselwirkung mit Oberflächen. Infolgedessen hat sich mein
eigenes Interesse auf einfachere Modelle verlagert, was einem schon länger
bestehenden Trend in der Forschergemeinschaft folgt. Dennoch bleibt die
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Elektrokinetik im Bereich der aktiven Materie relevant, weil der chemische
Antrieb zu emergenten Phänomenen führt, die nicht universell sind oder
die von den einfacheren Modellen nicht erfasst werden. In jüngerer Zeit hat
sich der Fokus der Fachgemeinschaft auf biologische, bio-kompatible und
bio-inspirierte Schwimmer verlagert, woran meine Arbeit über Squirmer
anknüpft. Die Forschung an diesen Schwimmern hat mehr medizinische
Relevanz und liefert direkte Einblicke in die Biologie. Als weitere Folge ist
das Interesse an viskoelastischen Flüssigkeiten aufgrund ihrer Verbreitung
in der Natur stark angestiegen. Ihre komplexere Rheologie eröffnete neue
Verhaltensweisen von Schwimmern, z.B. weil sie ihnen ermöglicht, dem
Scallop-Theorem auszuweichen. Die Kombination der Simulationsmethoden
für Viskoelastizität, Elektrolyte und chemische Reaktionen, die ich in dieser
Arbeit vorstelle, wird ein wertvolles Werkzeug für die Untersuchung von
biologischen und künstlichen Mikroschwimmern in einem breiten Spektrum
von Fluidumgebungen darstellen.
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